摘要:
A diaphragm pump enabling an increase in pump efficiency by reducing the pressure loss of liquid and reduction in thickness. The flow passage in piezoelectric pump (1) includes a pressure chamber (50) formed into a flat shape in cross section and a suction side flow passage (70a) and discharge side flow passage (70b). The suction side flow passage (70a) and the discharge side flow passage (70b) are disposed at both ends of the pressure chamber (50) so that the axes thereof are aligned with each other. The check valves (20a, 20b) are respectively disposed on the suction side flow passage (70a) and the discharge side flow passage (70b), and are tilted relative to the flow direction of the liquid.
摘要:
A semiconductor device is provided including a semiconductor element having a circuit and at least one electrode of the circuit, a flexible substrate having at least one electrode pad and surrounding the semiconductor element, a conductor for connecting the electrode with the electrode pad, and a plurality of solder bumps on the electrode pad, wherein at least a first portion between a surface facing the solder bumps of the semiconductor element and the flexible substrate is not fixed by adhesion.
摘要:
After an optical waveguide substrate including a supporting substrate is adhered to an electric wiring board, the supporting substrate alone is dissolved using an organic solvent for removal. Alternatively, the supporting substrate alone is melted through a thermal treatment for removal. Further, a core layer of an optical waveguide is formed on the substrate using a photosensitive resin having a thermal expansion coefficient substantially identical to that of the supporting substrate.
摘要:
The present invention provides a cooling apparatus which is easy to build and to fix it to electronic devices, superior in thermal conduction and heat dissipation, and possible to make thin the total configuration of the apparatus. The liquid cooling unit 9 and the air cooling unit 12 are formed in a unit. A heat absorption surface 19 of the liquid cooling unit 9 is contacted or bonded to the heat generation component such as the CPU and the heat generator, which have the largest power consumption and also locally generate heat within a small area in the box 2. In the liquid cooling unit 9, a liquid cooling pump 14 composed of an electromagnetic pump is arranged for circulating the coolant in the flow path 10. The heat generated by the heat generation components such as CPU 6, heat generator 7, and the like is thermally diffused with heat conduction into the whole liquid cooling unit 9 by circulating the coolant with the liquid cooling pump 14.
摘要:
The thermal resistance of an entire semiconductor package with a semiconductor chip and radiation fins is calculated based on thermal resistance of resin between the semiconductor chip and case, thermal resistance of the radiation fins, and thermal resistance of three heat radiation paths in the semiconductor package. One of said three heat radiation paths is passing through the bottom surface of the case. The other of said three radiation paths is passing through the leadframe. The other of three radiation paths is passing through sides of the case other than the leadframe.