Abstract:
A probe for scanned probe microscopy is provided. The probe includes a cantilever beam and a tip. The cantilever beam extends along a generally horizontal axis. The cantilever beam has a crystal facet surface that is oriented at a tilt angle with respect to the generally horizontal axis. The tip projects outwardly from the crystal facet surface.
Abstract:
An electro-mechanical transistor includes a source electrode and a drain electrode spaced apart from each other. A source pillar is between the substrate and the source electrode. A drain pillar is between the substrate and the drain electrode. A moveable channel is spaced apart from the source electrode and the drain electrode. A gate nano-pillar is between the moveable channel and the substrate. A first dielectric layer is between the moveable channel and the gate nano-pillar. A second dielectric layer is between the source pillar and the source electrode. A third dielectric layer is between the drain pillar and the drain electrode.
Abstract:
A highly dense form of static random-access memory (SRAM) takes advantage of transistor gates on both sides of silicon and high interconnectivity made possible by the complex form of silicon-on-insulator and three-dimensional integration. This technology allows one to form p-channel and n-channel devices very compactly by taking advantage of placement of gates on both sides, making common contacts and dense interconnections in 3D.
Abstract:
Mechanical devices having bistable positions are utilized to form switches and memory devices. The devices are actuatable to different positions and may be coupled to a transistor device in various configurations to provide memory devices. Actuation mechanisms include electrostatic methods and heat. In one form, the mechanical device forms a gate for a field effect transistor. In a further form, the device may be a switch that may be coupled to the transistor in various manners to affect its electrical characteristics when on and off. The memory switch in one embodiment comprises side walls formed with tensile or compressive films. A cross point switch is formed from a plurality of intersecting conductive rows and columns of conductors. Actuatable switches are positioned between each intersection of the rows and columns such that each intersection is independently addressable.
Abstract:
According to an aspect of the invention, a device structure is provided where charging and discharging occur in a trapping region formed by a stack of films that is placed on the back of a thin silicon channel. Uncoupling the charging mechanisms that lead to the memory function from the front gate transistor operation allows efficient scaling of the front gate. But significantly more important is a unique character of these devices: these structures can be operated both as a transistor and as a memory. The thin active silicon channel and the thin front oxide provide the capability of scaling the structure to tens of nanometers, and the dual function of the device is obtained by using two voltage ranges that are clearly distinct. At small voltages the structure operates as a normal transistor, and at higher voltages the structure operates as a memory device.
Abstract:
A highly dense form of static random-access memory (SRAM) takes advantage of transistor gates on both sides of silicon and high interconnectivity made possible by the complex form of silicon-on-insulator and three-dimensional integration. This technology allows one to form p-channel and n-channel devices very compactly by taking advantage of placement of gates on both sides, making common contacts and dense interconnections in 3D.
Abstract:
A patterned SOI/SON composite structure and methods of forming the same are provided. In the SOI/SON composite structure, the patterned SOI/SON structures are sandwiched between a Si over-layer and a semiconductor substrate. The method of forming the patterned SOI/SON composite structure includes shared processing steps wherein the SOI and SON structure are formed together. The present invention also provides a method of forming a composite structure which includes buried conductive/SON structures as well as a method of forming a composite structure including only buried void planes.
Abstract:
A method and structure for forming patterned SOI regions and bulk regions is described wherein a silicon containing layer over an insulator may have a plurality of selected thickness' and wherein bulk regions may be suitable to form DRAM's and SOI regions may be suitable to form merged logic such as CMOS. Ion implantation of oxygen is used to formed patterned buried oxide layers at selected depths and mask edges may be shaped to form stepped oxide regions from one depth to another. Trenches may be formed through buried oxide end regions to remove high concentrations of dislocations in single crystal silicon containing substrates. The invention overcomes the problem of forming DRAM with a storage capacitor formed with a deep, trench in bulk Si while forming merged logic regions on SOI.
Abstract:
In a method for forming a three dimensional interconnected structure, sets of devices on receiver and donor semiconductor substrates. The donor substrate is implanted with two or more exfoliating implants, the substrates are bonded together to form a bonded structure that is heated until a portion of the donor substrate exfoliates from the bonded structure and leaves a residual portion of the donor bonded to the receiver. To form three dimensional interconnected integrated circuits from devices formed on donor and receiver substrates, the receiver devices are covered with a protective and bonding layer. Interconnect structures extending from the surface of the protective and bonding layer to the devices of the receiver are formed, and a donor is implanted with two or more exfoliating implants. After bonding and heating of the two substrates until a portion of the donor exfoliates from the bonded substrates, leaving a remaining layer of the donor bonded to the receiver, the resulting devices are interconnected in an integrated circuit.
Abstract:
The present invention is directed to a microelectric device and especially a Field effect transistor comprising a source, drain, channel, an insulating layer overlying said channel containing at least one closed cage molecule, said closed cage molecule being capable of exhibiting a Coulomb blockade effect upon application of a voltage between said source and drain. Two different microelectronic devices are described containing the closed cage molecule, a logic cell and a memory cell.