Abstract:
An electronic device includes a housing, a circuit board, and a microphone array. A plurality of acoustic openings is defined in the housing. The circuit board is placed in the housing. The microphone array is placed on the circuit board for receiving external sound via the acoustic openings in the housing.
Abstract:
A ratchet driven screwdriver with bits storage has a body. A ratchet driving device has a ratchet, a lever, a ratchet housing, a ratchet spring, two L-shaped ratchets, a steel ball and a compression spring. A bits storage has a spring seat, two torsion springs, a storage tube, an axis column, and a bits box. When replacing the bits, the back cover is pulled to drive the storage tube. Currently, a pressure of the two torsion springs can extend to a tapered end of the axis column to release a vertical force, and the back cover is pulled apart. The two torsion springs extend to the other end of the axis column, and the vertical force can make the bits box pushed to the open state and locked, so that an alternate screwdriver bit can be selected with turning the back cover.
Abstract:
A method and apparatus derive a motion vector predictor (MVP) for a current block in an Inter, Merge, or Skip mode. Embodiments according to the present invention determine redundant MVP candidates according to a non-MV-value based criterion. The redundant MVP candidates are then removed from the MVP candidate set. In other embodiments according to the present invention, motion IDs are assigned to MVP candidates to follow the trail of motion vectors associated with the MVP candidate. An MVP candidate having a same motion ID as a previous MVP is redundant and can be removed from the MVP candidate set. In yet another embodiment, redundant MVP candidates correspond to one or more of the MVP candidates that cause the second 2N×N or N×2N PU to be merged into a 2N×2N PU are removed from the MVP candidate set.
Abstract:
A method for fabricating a semiconductor device includes the following steps. Firstly, a dummy gate structure having a dummy gate electrode layer is provided. Then, the dummy gate electrode layer is removed to form an opening in the dummy gate structure, thereby exposing an underlying layer beneath the dummy gate electrode layer. Then, an ammonium hydroxide treatment process is performed to treat the dummy gate structure. Afterwards, a metal material is filled into the opening.
Abstract:
A method and apparatus for deriving a motion vector predictor (MVP) are disclosed. The MVP is selected from spatial MVP and temporal MVP candidates. The method uses a flag to indicate whether temporal MVP candidates are disabled. If the flag indicates that the temporal MVP candidates are disabled, the MVP is derived from the spatial MVP candidates only. Otherwise, the MVP is derived from the spatial and temporal MVP candidates. The method may further skip spatial redundant MVP removal by comparing MV values. Furthermore, the parsing error robustness scheme determines a forced temporal MVP when a temporal MVP is not available and the temporal MVP candidates are allowed as indicated by the flag. The flag may be incorporated in sequence, picture, slice level, or a combination of these levels.
Abstract:
A method of illumination compensation for three-dimensional or multi-view encoding and decoding. The method incorporates an illumination compensation flag only if the illumination compensation is enabled and the current coding unit is processed by one 2N×2N prediction unit. The illumination compensation is applied to the current coding unit according to the illumination compensation flag. The illumination compensation flag is incorporated when the current coding unit is coded in Merge mode without checking whether a current reference picture is an inter-view reference picture.
Abstract:
A method and apparatus for deriving a temporal motion vector predictor (MVP) are disclosed. The MVP is derived for a current block of a current picture in Inter, or Merge, or Skip mode based on co-located reference blocks of a co-located block. The co-located reference blocks comprise an above-left reference block of the bottom-right neighboring block of the co-located block. The reference motion vectors associated with the co-located reference blocks are received and used to derive the temporal MVP. Various configurations of co-located reference blocks can be used to practice the present invention. If the MVP cannot be found based on the above-left reference block, search for the MVP can be continued based on other co-located reference blocks. When an MVP is found, the MVP is checked against the previously found MVP. If the MVP is the same as the previously found MVP, the search for MVP continues.
Abstract:
A process for preparing ethylene glycol comprising: forming intermediums of formaldehyde and glycolaldehyde to synthetize ethylene glycol by reacting methanol with methanol in the presence of a catalyst composition comprising rhodium catalysts and ruthenium catalysts at a temperature between 50-150° C. and a pressure between 0-40 kg/cm2G.
Abstract:
A method and apparatus for deriving MV/MVP (motion vector or motion vector predictor) or DV/DVP (disparity vector or disparity vector predictor) associated Skip mode, Merge mode or Inter mode for a block of a current picture in three-dimensional (3D) video coding are disclosed. The 3D video coding may use temporal prediction and inter-view prediction to exploit temporal and inter-view correlation. MV/DV prediction is applied to reduce bitrate associated with MV/DV coding. The MV/MVP or DV/DVP for a block is derived from spatial candidates, temporal candidates and inter-view candidates. For the inter-view candidate, the position of the inter-view co-located block can be located using a global disparity vector (GDV) or warping the current block onto the co-located picture according to the depth information. The candidate can also be derived as the vector corresponding to warping the current block onto the co-located picture according to the depth information.
Abstract:
A frame prediction system and a prediction method thereof. An initializing module initializes a first image block having a plurality of pixels. A providing module provides a first centroid and a first motion vector of a second image block. The location lookup module finds a location according to the first centroid, and generates a first weight and a second weight respectively according to a relationship between each of the pixels, the first centroid and the location. A vector lookup module finds a second motion vector, which gives a minimum pixel intensity error for the plurality of pixels in the first image block according to the first centroid, the first motion vector, the location, the first weight and the second weight. A processing module sequentially calculates a plurality of predictive intensity values according to the motion vectors and the weights.