Abstract:
A mask read-only memory (ROM) device, which can stably output data, includes an on-cell and an off-cell. The on-cell includes an on-cell gate structure on a substrate and an on-cell junction structure within the substrate. The off-cell includes an off-cell gate structure on the substrate and an off -cell junction structure within the substrate. The on-cell gate structure includes an on-cell gate insulating film, an on-cell gate electrode and an on-cell gate spacer. The on-cell junction structure includes first and second on-cell ion implantation regions of a first polarity and third and fourth on-cell ion implantation regions of a second polarity. The off-cell gate structure includes an off-cell gate insulating film, an off-cell gate electrode and an off-cell gate spacer. The off-cell junction structure includes first and second off-cell ion implantation regions of the first polarity and a third off-cell ion implantation region of the second polarity.
Abstract:
A non-volatile memory device comprises a semiconductor substrate having source/drain regions formed at both ends of a channel region, a gate structure forming an offset region by being separated a predetermined distance from the source region and comprising a charge accumulation region and a control gate sequentially deposited in the channel region to at least partially overlap the drain region, and a spacer arranged at each of both side walls of the gate structure. A threshold voltage value of the offset region changes depending on a dielectric constant of the spacer.
Abstract:
A non-volatile integrated circuit memory device may include a semiconductor substrate having first and second electrically isolated wells of a same conductivity type. A first plurality of non-volatile memory cell transistors may be provided on the first well, and a second plurality of non-volatile memory cell transistors may be provided on the second well. A local control gate line may be electrically coupled with the first and second pluralities of non-volatile memory cell transistors, and a group selection transistor may be electrically coupled between the local control gate line and a global control gate line. More particularly, the group selection transistor may be configured to electrically couple and decouple the local control gate line and the global control gate line responsive to a group selection gate signal applied to a gate of the group selection transistor. Related methods and systems are also discussed.
Abstract:
A semiconductor device includes a semiconductor substrate, source and drain regions formed on the semiconductor substrate, a recess channel that is formed on the inner surface of a recess region, which is formed on the semiconductor substrate between the source and drain regions, and in an epitaxial semiconductor film in which dopants are doped. The semiconductor device further includes a gate insulating film formed on the recess channel, and a gate electrode that fills the recess region and is formed on the gate insulating film.
Abstract:
A non-volatile memory device and a method for fabricating the non-volatile memory device. The non-volatile memory device includes a memory cell located in a first conductive region and has a memory transistor, a selection transistor and a high voltage switching device located in a second conductive region close to the first conductive region. The memory cell is controlled by the high voltage switching device. At least one of the high voltage switching device, the memory transistor, or the selection transistor has a recessed channel region.
Abstract:
A non-volatile memory integrated circuit device and a method fabricating the same are disclosed. The non-volatile memory integrated circuit device includes a semiconductor substrate, word and select lines, and a floating junction region, a bit line junction region and a common source region. The semiconductor substrate has a plurality of substantially rectangular field regions, and the short and long sides of each substantially rectangular field region are parallel to the row and column directions of a matrix, respectively. The word lines and select lines extend parallel to the row direction on the semiconductor substrate, the word lines crossing a plurality of substantially rectangular field regions disposed in the row direction, and the select lines partially overlapping substantially rectangular field regions arranged in the row direction of the matrix, such that the parts of the long sides of the substantially field regions and the short sides of the substantially rectangular field regions are located below the select lines. The floating junction region is formed within the semiconductor substrate between the word lines and the select lines, the bit line junction region is formed opposite the floating junction region, and the common source region is formed opposite the floating junction region.
Abstract:
A method of forming a fin field effect transistor on a semiconductor substrate includes forming a fin-shaped active region vertically protruding from the substrate. An oxide layer is formed on a top surface and opposing sidewalls of the fin-shaped active region. An oxidation barrier layer is formed on the opposing sidewalls of the fin-shaped active region and is planarized to a height no greater than about a height of the oxide layer to form a fin structure. The fin structure is oxidized to form a capping oxide layer on the top surface of the fin-shaped active region and to form at least one curved sidewall portion proximate the top surface of the fin-shaped active region. The oxidation barrier layer has a height sufficient to reduce oxidation on the sidewalls of the fin-shaped active region about halfway between the top surface and a base of the fin-shaped active region. Related devices are also discussed.
Abstract:
A method of manufacturing a twin-ONO-type SONOS memory using a reverse self-alignment process, wherein an ONO dielectric layer is formed under a gate and physically separated into two portions using a reverse self-alignment process irrespective of photolithographic limits. To facilitate the reverse self-alignment, a buffer layer and spacers for defining the width of the ONO dielectric layer are adopted. Thus, the dispersion of trapped charges during programming and erasing can be appropriately adjusted, thus improving the characteristics of the SONOS. The present invention prevents the redistribution of charges in time after the programming and erasing operations.
Abstract:
Formulations for enhanced mucosal absorption of heparin are disclosed. In one embodiment, a powdered heparin composition is made by dissolving an amphiphilic heparin derivative including heparin covalently bonded to a hydrophobic agent in a water phase, dispersing the water phase in an organic phase such that an emulsion is formed, and drying the emulsion. In another embodiment, an amorphiphilic heparin derivative dispersed in an oil phase is made by dissolving the amphiphilic heparin derivative in water or a water/organic co-solvent, dispersing the water or co-solvent in the oil phase, and evaporating the water or co-solvent. In another embodiment, heparin-containing nanoparticles having surfactant molecules associated with a hydrophobic agent on the outside of the nanoparticles are made by dissolving the amphiphilic heparin derivative in an aqueous solvent, mixing the surfactant with the aqueous solvent, and disrupting nanoparticles of the amphiphilic heparin derivative. Compositions made according to these methods are also described.
Abstract:
A non-volatile semiconductor memory device and the fabricating method thereof, wherein control gates respectively formed at the active areas of the resultant structure for getting a corresponding pair of split floating gates continuously overlapped and buried diffusion areas formed at the substrate of the periphery of the field insulating layer positioned between neighboring source areas to prevent the source areas from being electrically disconnected by the field insulating layer, even if the floating gate pattern and the control gate pattern are respectively made by separate processes, so that there will be no mismatching between the aforementioned two patterns, thereby leading to no tendency of showing different characteristics of memory cells in accordance with odd/even numbered word lines, the schematic characteristic of cells makes it possible to program and erase a byte, and one contact hole is not used at each bit line, the number of contact holes gets small, thereby making it possible to scale down cells.