Abstract:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
Abstract:
A thin film transistor array panel includes a substrate; a plurality of gate lines that are formed on the substrate; a plurality of data lines that intersect the gate lines; a plurality of thin film transistors that are connected to the gate lines and the data lines; a plurality of color filters that are formed on upper parts of the gate lines, the data lines, and the thin film transistors; a common electrode that is formed on the color filters and that includes a transparent conductor; a passivation layer that is formed on an upper part of the common electrode; and a plurality of pixel electrodes that are formed on an upper part of the passivation layer and that are connected to a drain electrode of each of the thin film transistors.
Abstract:
A thin film transistor array panel includes a substrate; a plurality of gate lines that are formed on the substrate; a plurality of data lines that intersect the gate lines; a plurality of thin film transistors that are connected to the gate lines and the data lines; a plurality of color filters that are formed on upper parts of the gate lines, the data lines, and the thin film transistors; a common electrode that is formed on the color filters and that includes a transparent conductor; a passivation layer that is formed on an upper part of the common electrode; and a plurality of pixel electrodes that are formed on an upper part of the passivation layer and that are connected to a drain electrode of each of the thin film transistors.
Abstract:
A 3D nonvolatile memory device includes: a plurality of channel structures including a plurality of channel layers and interlayer dielectric layers, which are alternately stacked, and extended in a first direction; a plurality of word lines extended in a second direction at least substantially perpendicular to the first direction; a plurality of row select lines connected to the plurality of channel layers, respectively, and extended in the second direction; and a plurality of column select lines connected to the plurality of channel structures, respectively, and extended in the first direction.
Abstract:
A liquid crystal display includes a first substrate, a plurality of gate lines formed on the first substrate, a plurality of data lines intersecting the gate lines, a plurality of thin film transistors connected to the gate lines and the data lines, a plurality of color filters formed on the gate lines, the data lines, and the thin film transistors, a plurality of first electrodes made of a transparent conductor formed on the color filters, and electrically connected to the thin film transistors, a first passivation layer formed on the first electrodes, a second electrode formed on the first passivation layer, and including a plurality of branch electrodes, a second substrate facing the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate.
Abstract:
A liquid crystal display to prevent light leakage with an improvement of aperture ratio and a reduction of load of a data line is provided. The liquid crystal display includes a gate line and a storage electrode line formed on a insulating substrate and apart from each other, a first data line and a second data line intersecting the gate line, a first pixel electrode defined by the gate line and the first data line, and a second pixel electrode defined by the gate line and the second data line and neighboring the first pixel electrode. Also, a blocking electrode between the first pixel electrode and the second pixel electrode is included, wherein at least portion of the first data line is disposed under the first pixel electrode, and at least portion of the blocking electrode is disposed under the second pixel electrode and apart from the first data line.
Abstract:
A thin film transistor substrate according to an embodiment of the present invention includes: an insulation substrate; a gate line formed on the insulation substrate; a first interlayer insulating layer formed on the gate line; a data line and a gate electrode formed on the first interlayer insulating layer; a gate insulating layer formed on the data line and gate electrode; a semiconductor formed on the gate insulating layer and overlapping the gate electrode; a second interlayer insulating layer formed on the semiconductor; a first connection formed on the second interlayer insulating layer and electrically connecting the gate line and the gate electrode to each other; a drain electrode connected to the semiconductor; a pixel electrode connected to the drain electrode; and a second connection connecting the data line and the semiconductor to each other.
Abstract:
A thin film transistor array panel includes a substrate; a plurality of gate lines that are formed on the substrate; a plurality of data lines that intersect the gate lines; a plurality of thin film transistors that are connected to the gate lines and the data lines; a plurality of color filters that are formed on upper parts of the gate lines, the data lines, and the thin film transistors; a common electrode that is formed on the color filters and that includes a transparent conductor; a passivation layer that is formed on an upper part of the common electrode; and a plurality of pixel electrodes that are formed on an upper part of the passivation layer and that are connected to a drain electrode of each of the thin film transistors.
Abstract:
A mask includes a transparent substrate, a light-blocking layer and a halftone layer. The light-blocking layer includes a source electrode pattern portion including a first electrode portion, a second electrode portion and a third electrode portion, and a drain electrode pattern portion disposed between the second electrode portion and the third electrode portion. The halftone layer includes a halftone portion corresponding to a spaced-apart portion between the source electrode pattern portion and the drain electrode pattern portion, and a dummy halftone portion more protrusive than ends of the second electrode portion and the third electrode portion. Thus, a photoresist pattern corresponding to a channel portion of a thin film transistor (TFT) may be formed with a uniform thickness, to thereby prevent an excessive etching of the channel portion.
Abstract:
A 3D nonvolatile memory device includes: a plurality of channel structures including a plurality of channel layers and interlayer dielectric layers, which are alternately stacked, and extended in a first direction; a plurality of word lines extended in a second direction at least substantially perpendicular to the first direction; a plurality of row select lines connected to the plurality of channel layers, respectively, and extended in the second direction; and a plurality of column select lines connected to the plurality of channel structures, respectively, and extended in the first direction.