Abstract:
This invention provides a design of Wien filter for satisfying Wien Condition so as to ensure the Wien filter's performance. At first, to minimize the magnetic flux leaking out of the Wien filter, the invention proposes three measures to form a magnetic circuit to cover the magnetic device of a Wien filter respectively. The measures especially benefit a Wien filter acting as beam separator or Monochromator in a high resolution SEM. Secondly, based on the Wien filter proposed in cross-reference, several ways are provided for reducing the dissatisfaction of Wien Condition within the Wien filter, which especially modify either or both of the distribution shapes of the on-axis electric and magnetic dipole fields at two ends of the Wien filter. These ways provide more flexibility to reduce the dissatisfaction of Wien Condition in a Wien filter to a given degree at a reasonable manufacturing cost.
Abstract:
A detection unit of a charged particle imaging system includes a multi type detection subunit in the charged particle imaging system, with the assistance of a Wien filter (also known as an E×B charged particle analyzer). The imaging system is suitable for a low beam current, high resolution mode and a high beam current, high throughput mode. The unit can be applied to a scanning electron inspection system as well as to other systems that use a charged particle beam as an observation tool.
Abstract:
An apparatus comprises an imaging unit to image a wafer to be reviewed, wherein imaging unit is the modified SORIL column. The modified SORIL column includes a focusing sub-system to do micro-focusing due to a wafer surface topology, wherein the focusing sub-system verifies the position of a grating image reflecting from the wafer surface to adjust the focus; and a surface charge control to regulate the charge accumulation due to electron irradiation during the review process, wherein the gaseous molecules are injected under a flood gun beam rather than under a primary beam. The modified SORIL column further includes a storage unit for storing wafer design database; and a host computer to manage defect locating, defect sampling, and defect classifying, wherein the host computer and storage unit are linked by high speed network.
Abstract:
A detection unit of a charged particle imaging system includes a multi type detection subunit in the charged particle imaging system, with the assistance of a Wien filter (also known as an E×B charged particle analyzer). The imaging system is suitable for a low beam current, high resolution mode and a high beam current, high throughput mode. The unit can be applied to a scanning electron inspection system as well as to other systems that use a charged particle beam as an observation tool.
Abstract:
The present invention relates to a multi-axis magnetic lens for a charged particle beam system. The apparatus eliminates the undesired non-axisymmetric transverse magnetic field components from the magnetic field generated by a common excitation coil and leaves the desired axisymmetric field for focusing each particle beam employed within the system.
Abstract:
The present invention relates to a charged particle beam apparatus which employs a scanning electron microscope for sample inspection and defect review.The present invent provides solution of improving imaging resolution by utilizing a field emission cathode tip with a large tip radius, applying a large accelerating voltage across ground potential between the cathode and anode, positioning the beam limit aperture before condenser lens, utilizing condenser lens excitation current to optimize image resolution, applying a high tube bias to shorten electron travel time, adopting and modifying SORIL objective lens to ameliorate aberration at large field of view and under electric drifting and reduce the urgency of water cooling objective lens while operating material analysis.The present invent provides solution of improving throughput by utilizing fast scanning ability of SORIL and providing a large voltage difference between sample and detectors.
Abstract:
The present invention relates to an operation stage of a charged particle beam apparatus which is employed in a scanning electron microscope for substrate (wafer) edge and backside defect inspection or defect review. However, it would be recognized that the invention has a much broader range of applicability. A system and method in accordance with the present invention provides an operation stage for substrate edge inspection or review. The inspection region includes top near edge, to bevel, apex, and bottom bevel. The operation stage includes a supporting stand, a z-stage, an X-Y stage, an electrostatic chuck, a pendulum stage and a rotation track. The pendulum stage mount with the electrostatic chuck has the ability to swing from 0° to 180° while performing substrate top bevel, apex and bottom bevel inspection or review. In order to keep the substrate in focus and avoid a large position shift during altering the substrate observation angle by rotation the pendulum stage, one embodiment of the present invention discloses a method such that the rotation axis of the pendulum stage consist of the tangent of upper edge of the substrate to be inspected. The electrostatic chuck of the present invention has a diameter smaller than which of the substrate to be inspected. During the inspection process the substrate on the electrostatic chuck may be rotated about the central axis on the electrostatic chuck to a desired position, this design insures all position on the bevel and apex are able to be inspected.
Abstract:
A hybrid lithography system is disclosed to achieve high throughput and high resolution of sub 32 nm lithography. The hybrid system contains an optical lithographer for expose pattern area where features above 32 nm, and a cluster e-beam lithography system for expose pattern area where features is sub 32 nm.
Abstract:
An apparatus and method for scanning the surface of a specimen is disclosed for defect inspection purposes. Scanning Electron Microscope (SEM) is used to scan the surface of a specimen. The scanning method employed by the SEM comprises the steps of: generating a particle beam from a particle beam emitter, and scanning the surface of the specimen by bending the particle beam at an angle with respect to the surface of the specimen, wherein the particle beam traverses an angle that is not parallel or perpendicular to the orientation of the specimen. The specimen being scanned is a semiconductor wafer or a photomask.
Abstract:
The present invention provides a digital high-resolution detector for detecting X-ray, UV light or charged particles. In various embodiments, the digital detector comprises an array of CMOS or CCD pixels and a layer of conversion material on top of the array designed for converting incident X-ray, UV light or charged particles into photons for CMOS or CCD sensors to capture. The thin and high-resolution detector of the invention is particularly useful for monitoring and aligning beams in, and optimizing system performance of, an apparatus of charged-particle beam e.g. an electron microscope.