摘要:
A heterogeneous multiple core control system for predictive medical monitoring is provided. The system includes a first processor platform that is optimized for serialized computation and a second processor platform that is optimized for parallelized computation. A memory stores instructions that are executed by either the first processor platform or the second processor platform to provide the functionality of the system. By executing the instructions, the system determines whether a condition of a first patient is to be monitored using a primarily parallelized model or a primarily serialized model. The predicted condition is calculated using the primarily parallelized model by executing the primarily parallelized model on the second processor platform. The predicted condition is calculated using the primarily serialized model by executing the primarily serialized model on the first processor platform.
摘要:
Systems and methods may be provided embodying an optimized Trill LAN network hello mode. The optimized hello mode may allow the number of LAN hellos exchanged to be reduced significantly in a steady state mode of operation. No modifications to the current Trill specification are needed and in a converged state (when designated RBridge election and appointed forwarder appointments are complete), only 1 hello PDU per RBridge is originated in every hello interval.
摘要:
System and method for non-contact acquisition of current physiological data representing a subject. A first electromagnetic wave representing current physiological status of a first subject is modified by a second electromagnetic wave representing current physiological status of a second subject in proximity to the first subject. A parameter of the first electromagnetic wave representing a first physiological status of a first subject is measured with electronic circuitry to extract a parameter of the second electromagnetic wave. Historical physiological data associated with the second subject is acquired. The current physiological data representing current physiological status of the second subject is then derived based on historical physiological data of the second subject and a comparison between the first and second parameters.
摘要:
Techniques to optimize root network node selection for network tree paths are provided. A network disruption event is detected. Network nodes in the network are configured with root priorities. Network nodes in a first set of the network nodes operate as root nodes for ordered network tree paths. Root priority information is retrieved from a database for each of the network nodes. Based on the root priority information, network nodes are selected for a new set of network nodes to operate as new root nodes for new ordered network tree paths upon occurrence of the network disruption event. The new set of network nodes comprises common network nodes present in the first set. An order of the network nodes in the new set is determined such that at least one common network node in the new set is maintained in the same order as that in the first set.
摘要:
An example method is provided and includes a multicast data message from a data source, the message in a first virtual local area network and being associated with a multicast group. The method also includes calculating a hash value based on the virtual local area network, the data source, and the multicast group, determining a port for a designated router in a Layer-2 network based on the hash value, and switching the multicast data message to the port that was determined.
摘要:
A system for the monitoring and/or controlling emission levels of nitrogen oxide and a reductant from a stream of combustion exhaust, wherein the internal combustion engine includes a SCR unit disposed in the stream of combustion exhaust between an upstream conduit and a downstream conduit, the SCR unit having a catalyst that is configured to catalytically reduce nitrogen oxides contained in the combustion exhaust to elemental nitrogen in the presence of a reductant and oxygen, and wherein the internal combustion engine further includes a reductant injector; the system comprising: a laser absorption spectroscopy unit that is disposed in the downstream conduit and configured to measure the concentration level of at least nitrogen oxide and the reductant in the exhaust; and a control unit.
摘要:
A combustion gas measurement apparatus mounted in a gas turbine including: a tunable laser generating a radiation beam passing through a combustion gas path; a controller tuning the laser to emit radiation having at least a first selected wavelength and a second selected wavelength which both correspond to temperature-dependent transitions of a combustion species of the gas, wherein the first selected wavelength and the second selected wavelength are not near absorption peaks of neighboring wavelengths; a detector sensing the radiation beam passing through the combustion gas and generating an absorption signal indicative of an absorption of the beam by the combustion gas at each of the first wavelength and the second wavelength, and a processor executing a program stored on a non-transitory storage medium determining a combustion gas temperature based on a ratio of the adoption signals for the first wavelength and the second wavelength.
摘要:
An integrated spectrometer instrument, including an optical source formed on a chip, the optical source configured to generate an incident optical beam upon a sample to be measured. Collection optics formed on the chip are configured to receive a scattered optical beam from the sample, and filtering optics formed on the chip are configured to remove elastically scattered light from the scattered optical beam at a wavelength corresponding to the optical source. A tunable filter formed on the chip is configured to pass selected wavelengths of the scattered optical beam, and a photo detector device formed on the chip is configured to generate an output signal corresponding to the intensity of photons passed through the tunable filter.
摘要:
Complexities arising from interaction between multiple inter-connected components in an autonomous cyber physical system can potentially result in differences in intended and observed operations of a CPS. To perform fault analysis of a CPS it is imperative to explain this discrepancy in terms of the components of CPS control code. A system estimates a “mined” hybrid system representation of a CPS based on observed input/output traces and extracts a state machine representation of the CPS control code. The system compares the “mined” hybrid system representation with the extracted state machine representation simplification of the CPS code to identify discrepancies between expected and observed operation of the CPS. The system explains discrepancies in terms of call conditions as binary or unary operations on input and output variables and status of function call arguments.