Abstract:
Systems, methods and apparatus for controlling operation a hybrid powertrain are disclosed that use low power storage and motor/generator components in line haul operations. In one embodiment, a line haul drive cycle includes a low power motor/generator executing a power assistance operation of the hybrid powertrain powered by electricity from a low power storage responsive to a monitoring by a line haul controller of ascensions of the hybrid vehicle at or near a constant speed over an uneven terrain. The line haul drive cycle further includes the low power motor/generator executing a regenerative braking operation of the hybrid powertrain supplying captured electric energy to the low power storage responsive to a monitoring by the line haul controller of descensions of the hybrid vehicle at or near the constant speed over the uneven terrain.
Abstract:
An apparatus includes a stop/start module in operative communication with an engine. The stop/start module structured to determine whether a stopping event has occurred, determine whether an inhibiting condition is activated, turn off the engine for at least a portion of time in response to determining that a stopping event has occurred, and determine an actual stop ratio for the engine based on a number of times the engine is turned off in response to determining the occurrences of stopping events. Turning off the engine is inhibited in response to determining that an inhibiting condition is activated. The inhibiting condition is activated based on the actual stop ratio for the engine being greater than a target stop ratio at a beginning of a driving event. The target stop ratio is based on an operating parameter.
Abstract:
A device includes at least one of a brake position sensor operationally coupled to a brake and providing a brake position signal, or a clutch position sensor operationally coupled to a clutch and providing a clutch position signal. The device further includes a controller having a communication module structured to interpret the at least one of the brake position signal or the clutch position signal, and a collection module structured to collect vehicle dynamics information. The controller further includes a vehicle dynamics module structured to interpret the vehicle dynamics information, and a sensor diagnostics module structured to determine a failure of at least one of the clutch position sensor or the brake position sensor in response to the vehicle dynamics information and at least one of the clutch signal or the brake signal.
Abstract:
Systems, methods and apparatus for controlling operation a hybrid powertrain are disclosed that use low power storage and motor/generator components in line haul operations. In one embodiment, a line haul drive cycle includes a low power motor/generator executing a power assistance operation of the hybrid powertrain powered by electricity from a low power storage responsive to a monitoring by a line haul controller of ascensions of the hybrid vehicle at or near a constant speed over an uneven terrain. The line haul drive cycle further includes the low power motor/generator executing a regenerative braking operation of the hybrid powertrain supplying captured electric energy to the low power storage responsive to a monitoring by the line haul controller of descensions of the hybrid vehicle at or near the constant speed over the uneven terrain.
Abstract:
A system and method are disclosed for controlling a power split in a hybrid powertrain having an engine and a motor. According to at least one aspect of the present disclosure, the method includes selecting a displaced fuel consumption value for the engine based on a quantity of available reclaimed energy in a battery, where the displaced fuel consumption value favors using the quantity of available reclaimed energy at relatively high load conditions, operating the engine at a condition based on the displaced fuel consumption value to generate engine power to meet at least a portion of a power demand, and operating the motor to generate motor power sufficient to supply a remaining power demand not met by the engine power. The system includes a controller configured to perform the operations of the method.
Abstract:
A system includes a hybrid power train comprising an internal combustion engine and electrical system, which includes a first and second electrical torque provider, and an electrical energy storage device electrically coupled to first and second electrical torque provider. The system further includes a controller structured to perform operations including determining a power surplus value of the electrical system; determining a machine power demand change value; in response to the power surplus value of the electrical system being greater than or equal to the machine power demand change value, operating an optimum cost controller to determine a power division for the engine, first electrical torque provider, and second electrical torque provider; and in response to the power surplus value of the electrical system being less than the machine power demand change value, operating a rule-based controller to determine the power division for the engine, first, and second electrical torque provider.
Abstract:
A method includes operating a hybrid power train having an internal combustion engine and at least one electrical torque provider. The method further includes determining a machine power demand for the hybrid power train, and determining a power division between the internal combustion engine and the electrical torque provider in response to the machine power demand. The method further includes determining a state-of-charge (SOC) of an electrical energy storage device electrically coupled to the at least one electrical torque provider and interpreting a target SOC for the electrical energy storage device in response to a vehicle speed, and determining an SOC deviation for the electrical storage device, wherein the SOC deviation comprises a function of a difference between the SOC of the electrical energy storage device and the target SOC of the electrical energy storage device.
Abstract:
A method includes defining an application operating cycle and a number of behavior matrices for a hybrid power train that powers the application, each behavior matrix corresponding to operations of the hybrid power train operating in a parallel configuration. The method includes determining a number of behavior sequences corresponding to the behavior matrices and applied sequentially to the application operating cycle, confirming a feasibility of each of the behavior sequences, determining a fitness value corresponding to each of the feasible behavior sequences, in response to the fitness value determining whether a convergence value indicates that a successful convergence has occurred, and in response to determining that a successful convergence has occurred, determining a calibration matrix in response to the behavior matrices and fitness values. The method includes providing the calibration matrix to a hybrid power train controller.
Abstract:
A method includes operating a hybrid power train having an internal combustion engine and an electrical torque provider. The method further includes determining a machine power demand and, in response to the machine power demand, determining a power division description. The method includes operating the internal combustion engine and the electrical torque provider in response to the power division description. The method further includes operating the internal combustion engine by starting the internal combustion engine in response to determining that a battery state-of-charge is below a predetermined threshold value.
Abstract:
A method for controlling the distribution of power to a traction motor in a plug-in electric vehicle having a plurality of on-board sources of electric power. Power is distributed at a normal power control relationship in response to an operator control input during operation in a normal mode. Power is depleted at a first rate during operation of the vehicle in the normal mode. Power is distributed at a derate power control relationship in response to the operator control input during operation in a derate mode. Power is depleted at a second rate that is less than the first rate during operation in the derate mode to conserve the power of the one or more on-board sources. Operation in the derate mode can be initiated in response to information from sensors identifying a vehicle condition indicating a battery charge limitation.