Abstract:
A method of additive manufacturing is comprised of providing a material comprised of a ethyl cellulose polymer having an ethoxy content of 43% to 52% by mass and a plasticizer. The material is heated and dispensed through a nozzle to form an extrudate deposited on a base. The base, nozzle or combination thereof is moved while dispensing the material so that there is horizontal displacement between the base and nozzle in a predetermined pattern to form an initial layer of the material on the base and successive layers of the material are adhered on the initial layer to form an additive manufactured part by repeating the aforementioned steps. The article formed of the ethyl cellulose polymer may be used in many applications such as those related to the pharmaceutical and food industries.
Abstract:
Disclosed is a method of sequentially separating and recovering one or more NGLs (129, 229) from a natural gas feedstream (3). Specifically, a raw natural gas feedstream (3) is passed through two or more NGLs separation unit (100, 200) wherein each separation unit removes one or more NGLs from the natural gas feedstream to provide a methane-rich natural gas supply (205). Each separation unit employs an adsorption media and has an adsorption step and a media regeneration step wherein the regeneration step may be operated as a batch process, a semi-continuous process, or a continuous process. One embodiment of this method provides for the use of a different regenerable adsorbent media in each separation unit.
Abstract:
A method for separating natural gas liquids (NGLs) from a hydrocarbon gas mixture containing natural gas liquids and methane, comprising the steps of: i) providing a bed of adsorbent selective for NGLs over methane; ii) passing a hydrocarbon gas mixture containing methane and NGL through the bed of adsorbent to at least partially remove NGLs from the gas mixture to produce: (a) NGL-loaded adsorbent and (b) NGL-depleted hydrocarbon gas mixture; iii) recovering the NGL-depleted hydrocarbon gas mixture; iv) regenerating the NGL-loaded adsorbent by at least partially removing NGLs from the adsorbent; and v) sequentially repeating steps (ii) and (iii) using regenerated adsorbent from step (iv).
Abstract:
Disclosed is an improved process for recovering condensable components from a gas stream, in particular, heavier hydrocarbons from a gas stream. The present process uses solid adsorbent media to remove said heavier hydrocarbons wherein the adsorbent media is regenerated in a continuous fashion in a continuous adsorbent media co-current regeneration system using a stripping gas to provide a regenerated adsorbent media and a product gas comprising heavier hydrocarbons from a loaded adsorbent media.
Abstract:
A method is disclosed for the separation of ethane and heavier hydrocarbons or propane and heavier hydrocarbons from natural gas to provide a methane-rich natural gas stream and less volatile natural gas liquids (NGLs). This method provides for the use of a regenerable adsorbent media comprising a porous cross-linked polymeric adsorbent, a pyrolized macroporous polymer, or mixtures thereof, which is regenerated by a pressure swing adsorption (PSA) process, temperature swing adsorption (TSA) process, or combination of the two. Said regeneration step may be operated as a batch process, a semi-continuous process, or preferably as a continuous process.
Abstract:
The present invention provides compositions for use as elastomeric roof coatings having excellent infrared (IR) reflectivity which comprise (i) one or more elastomeric copolymer having a measured glass transition temperature (measured Tg) of from −100 to 0° C. and one or more mesoporous filler, preferably a mesoporous filler that is substantially free of organic groups or residues, the mesoporous filler chosen from mesoporous silica, mesoporous aluminosilicates and mesoporous alumina, wherein the composition has a pigment volume concentration (% PVC) of from 0.1 to 15%. Such compositions provide aqueous or solvent borne clearcoats that can go over existing, already painted or colorcoated roof or wall substrates to preserve their finish or appearance.
Abstract:
Disclosed is a method for running natural gas powered stationary combustion systems, such as an internal combustion engine, a furnace, a fired heater, a power plant, an incinerator, and the like. In one embodiment of the present method, ethane and heavier hydrocarbons or propane and heavier hydrocarbons (29) are removed (90) from a natural gas feedstream (3) to provide the methane-rich natural gas stream (5) used to fuel the stationary combustion system (100). One embodiment of this method provides for the use of a regenerable adsorbent media to remove the higher hydrocarbons which is regenerated by a microwave heating system. Said regeneration step may be operated as a batch process, a semi-continuous process, or a continuous process.
Abstract:
Geopolymer precursor-aerogel compositions. As an example, a geopolymer precursor-aerogel composition can include an aluminosilicate reactant, an alkaline activator, an aerogel additive, and a continuous medium.
Abstract:
A process for preparing structures of crosslinked silicon oxide which are mesoporous structures wherein, a portion of the materials used in the preparation of the structures are recycled for use in the preparation of additional structures.
Abstract:
The present disclosure provides embodiments of a composition comprising post-consumer recycled resin comprising: at least 50 weight percent polyolefin, having an initial limonene level of at least 5 ppm; virgin ethylene-based polymer; and at least one odor-active zeolite, wherein the odor-active zeolite has an FAU crystal structure, an MFI crystal structure, and/or beta crystal structure and a Si/Al molar ratio from 1 to 1000, wherein the composition has a reduced limonene level of less than 3 ppm.