摘要:
Methods for forming semiconductor devices are provided. A semiconductor substrate is etched such that the semiconductor substrate defines a trench and a preliminary active pattern. The trench has a floor and a sidewall. An insulating layer is provided on the floor and the sidewall of the trench and a spacer is formed on the insulating layer such that the spacer is on the sidewall of the trench and on a portion of the floor of the trench. The insulating layer is removed on the floor of the trench and beneath the spacer such that a portion of the floor of the trench is at least partially exposed, the spacer is spaced apart from the floor of the trench and a portion of the preliminary active pattern is partially exposed. A portion of the exposed portion of the preliminary active pattern is partially removed to provide an active pattern that defines a recessed portion beneath the spacer. A buried insulating layer is formed in the recessed portion of the active pattern. Related devices are also provided.
摘要:
Fin FET semiconductor devices are provided which include a substrate, an active pattern that protrudes vertically from the substrate and that extends laterally in a first direction, a device isolation layer which has a top surface that is lower than a top surface of the active pattern, a gate structure on the substrate that extends laterally in a second direction to cover a portion of the active pattern and a conductive layer that is on at least portions of side surfaces of the active pattern that are adjacent a side portion of the gate structure. The conductive layer may comprise a semiconductor layer, and the semiconductor layer may be in electrical contact with a contact pad. In other embodiments, the conductive layer may comprise a contact pad.
摘要:
A fin field-effect transistor (FinFET) device includes a fin-shaped semiconductor active region vertically protruding from a substrate and a gate structure on an upper surface and sidewalls of the fin-shaped semiconductor active region at a first portion thereof. The FinFET further includes a semiconductor epitaxial extension layer on the upper surface and sidewalls of the fin-shaped semiconductor active region at second portions thereof on opposite sides of the gate structure. The semiconductor epitaxial extension layer has a width that is greater than a width of the fin-shaped semiconductor active region at the first portion thereof. Related methods are also discussed.
摘要:
In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality to of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
摘要:
The present invention relates to a novel use of herbal extracts in a pharmaceutical composition for prevention and treatment of nephritis and, more particularly, to a pharmaceutical composition and a health functional food for prevention and/or treatment of nephritis that contains at least one herbal extract selected from the group consisting of a Crataegi Fructus extract, a Cinnamomi Cortex extract, a Prunella Spica extract, and an Equiseti Herba extract, a method for prevention and/or treatment of nephritis using the herbal extract, and a use of the herbal extract in preparation of a composition for prevention and/or treatment of nephritis. The herbal extract has a good therapeutic effect for nephritis on a nephritis model of which the nephritis is induced by a drug such as gentamicin, cisplatin, etc., and a good inhibitory activity on the growth of mesangial cells in kidneys, thereby providing a very useful means for prevention and/or treatment of nephritis.
摘要:
Methods for manufacturing a semiconductor device include forming a seed layer containing a silicon material on a substrate. An amorphous silicon layer containing amorphous silicon material is formed on the seed layer. The amorphous silicon layer is doped with an impurity. A laser beam is irradiated onto the amorphous silicon layer to produce a phase change of the amorphous silicon layer and change the amorphous silicon layer into a single-crystal silicon layer based on the seed layer.
摘要:
In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality to of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
摘要:
A vertical pillar semiconductor device may include a substrate, a group of channel patterns, a gate insulation layer pattern and a gate electrode. The substrate may be divided into an active region and an isolation layer. A first impurity region may be formed in the substrate corresponding to the active region. The group of channel patterns may protrude from a surface of the active region and may be arranged parallel to each other. A second impurity region may be formed on an upper portion of the group of channel patterns. The gate insulation layer pattern may be formed on the substrate and a sidewall of the group of channel patterns. The gate insulation layer pattern may be spaced apart from an upper face of the group of channel patterns. The gate electrode may contact the gate insulation layer and may enclose a sidewall of the group of channel patterns.
摘要:
A vertical semiconductor device, a DRAM device, and associated methods, the vertical semiconductor device including single crystalline active bodies vertically disposed on an upper surface of a single crystalline substrate, each of the single crystalline active bodies having a first active portion on the substrate and a second active portion on the first active portion, and the first active portion having a first width smaller than a second width of the second active portion, a gate insulating layer on a sidewall of the first active portion and the upper surface of the substrate, a gate electrode on the gate insulating layer, the gate electrode having a linear shape surrounding the active bodies, a first impurity region in the upper surface of the substrate under the active bodies, and a second impurity region in the second active portion.
摘要:
In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.