摘要:
An image sensor includes a device wafer substrate of a device wafer, a device layer of the device wafer, and optionally a heat control structure and/or a heat sink. The device layer is disposed on a frontside of the device wafer substrate and includes a plurality of photosensitive elements disposed within a pixel array region and peripheral circuitry disposed within a peripheral circuits region. The photosensitive elements are sensitive to light incident on a backside of the device wafer substrate. The heat control structure is disposed within the device wafer substrate and thermally isolates the pixel array region from the peripheral circuits region to reduce heat transfer between the peripheral circuits region and the pixel array region. The heat sink conducts heat away from the device layer.
摘要:
Embodiments of the present invention are directed to an image sensor having pixel transistors and peripheral transistors disposed in a silicon substrate. For some embodiments, a protective coating is disposed on the peripheral transistors and doped silicon is epitaxially grown on the substrate to form lightly-doped drain (LDD) areas for the pixel transistors. The protective oxide may be used to prevent epitaxial growth of silicon on the peripheral transistors during formation of the LDD areas of the pixel transistors.
摘要:
A backside illuminated imaging sensor with reinforced pad structure includes a device layer, a metal stack, an opening and a frame. The device layer has an imaging array formed in a front side of the device layer and the imaging array is adapted to receive light from a back side of the device layer. The metal stack is coupled to the front side of the device layer where the metal stack includes at least one metal interconnect layer having a metal pad. The opening extends from the back side of the device layer to the metal pad to expose the metal pad for wire bonding. The frame is disposed within the opening to structurally reinforce the metal pad.
摘要:
A backside illuminated (“BSI”) complementary metal-oxide semiconductor (“CMOS”) image sensor includes a photosensitive region disposed within a semiconductor layer and a stress adjusting layer. The photosensitive region is sensitive to light incident on a backside of the BSI CMOS image sensor to collect an image charge. The stress adjusting layer is disposed on a backside of the semiconductor layer to establish a stress characteristic that encourages photo-generated charge carriers to migrate towards the photosensitive region.
摘要:
Embodiments of an apparatus comprising a pixel array comprising a plurality of macropixels. Each macropixel includes a pair of first pixels each including a color filter for a first color, the first color being one to which pixels are most sensitive, a second pixel including a color filter for a second color, the second color being one to which the pixels are least sensitive and a third pixel including a color filter for a third color, the third color being one to which pixels have a sensitivity between the least sensitive and the most sensitive, wherein the first pixels each occupy a greater proportion of the light-collection area of the macropixel than either the second pixel or the third pixel. Corresponding process and system embodiments are disclosed and claimed.
摘要:
A technique for fabricating an image sensor including a pixel circuitry region and a peripheral circuitry region includes fabricating front side components on a front side of the image sensor. A dopant layer is implanted on a backside of the image sensor. A anti-reflection layer is formed on the backside and covers a first portion of the dopant layer under the pixel circuitry region while exposing a second portion of the dopant layer under the peripheral circuitry region. The first portion of the dopant layer is laser annealed from the backside of the image sensor through the anti-reflection layer. The anti-reflection layer increases a temperature of the first portion of the dopant layer during the laser annealing.
摘要:
A backside illuminated imaging sensor includes a semiconductor layer and an infrared detecting layer. The semiconductor layer has a front surface and a back surface. An imaging pixel includes a photodiode region formed within the semiconductor layer. The infrared detecting layer is disposed above the front surface of the semiconductor layer to receive infrared light that propagates through the imaging sensor from the back surface of the semiconductor layer.
摘要:
An image sensor includes a device wafer substrate of a device wafer, a device layer of the device wafer, and optionally a heat control structure and/or a heat sink. The device layer is disposed on a frontside of the device wafer substrate and includes a plurality of photosensitive elements disposed within a pixel array region and peripheral circuitry disposed within a peripheral circuits region. The photosensitive elements are sensitive to light incident on a backside of the device wafer substrate. The heat control structure is disposed within the device wafer substrate and thermally isolates the pixel array region from the peripheral circuits region to reduce heat transfer between the peripheral circuits region and the pixel array region. The heat sink conducts heat away from the device layer.
摘要:
A backside illuminated imaging sensor includes a semiconductor layer and an infrared detecting layer. The semiconductor layer has a front surface and a back surface. An imaging pixel includes a photodiode region formed within the semiconductor layer. The infrared detecting layer is disposed above the front surface of the semiconductor layer to receive infrared light that propagates through the imaging sensor from the back surface of the semiconductor layer.
摘要:
An image sensor pixel includes a substrate, a first epitaxial layer, a collector layer, a second epitaxial layer and a light collection region. The substrate is doped to have a first conductivity type. The first epitaxial layer is disposed over the substrate and doped to have the first conductivity type as well. The collector layer is selectively disposed over at least a portion of the first epitaxial layer and doped to have a second conductivity type. The second epitaxial layer is disposed over the collector layer and doped to have the first conductivity type. The light collection region collects photo-generated charge carriers and is disposed within the second epitaxial layer. The light collection region is also doped to have the second conductivity type.