Abstract:
A memory device is configured to identify a set of bit cells to be changed from a first state to a second state. In some examples, the memory device may apply a first voltage to the set of bit cells to change a least a first portion of the set of bit cells to the second state. In some cases, the memory device may also identify a second portion of the bit cells that remained in the first state following the application of the first voltage. In these cases, the memory device may apply a second voltage having a greater magnitude, duration, or both to the second portion of the set of bit cells in order to set the second portion of bit cells to the second state.
Abstract:
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A method is provided for healing reset errors for a magnetic memory using destructive read with selective write-back, including for example, a self-referenced read of spin-torque bits in an MRAM. Memory cells are prepared for write back by one of identifying memory cells determined in error using an error correcting code and inverting the inversion bit for those memory cells determined in error; identifying memory cells determined in error using an error correcting code and resetting a portion of the memory cells to the first state; and resetting one or more memory cells to the first state.
Abstract:
A magnetoresistive memory device that stores data in the synthetic antiferromagnet (SAF) included in each spin-torque memory cell provides for more robust data storage. In normal operation, the memory cells use the free portion of the memory cell for data storage. Techniques for storing data in the reference portions of memory cells are presented, where an unbalanced SAF that includes ferromagnetic layers having different magnetic moments is used to lower the switching barrier for the SAF and allow for writing data values to the SAF using lower currents and magnetic fields than would be required for a balanced SAF.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
In some examples, a memory device may be configured to store data in either an original or an inverted state based at least in part on a state associated with one or more shorted bit cells. For instance, the memory device may be configured to identify a shorted bit cell within a memory array and to store the data in the memory array, such that a state of the data bit stored in the shorted bit cell matches the state associated with the shorted bit cell.
Abstract:
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
A magnetoresistive memory array including a plurality of magnetoresistive memory elements wherein each magnetoresistive memory element comprises a free layer including at least one ferromagnetic layer having perpendicular magnetic anisotropy, a fixed layer, and a tunnel barrier, disposed between and in contact with the free and fixed layers. The tunnel barrier includes a first metal-oxide layer, having a thickness between 1 and 10 Angstroms, a second metal-oxide layer, having a thickness between 3 and 6 Angstroms, disposed on the first metal-oxide layer, and a third metal-oxide layer, having a thickness between 3 and 6 Angstroms, disposed over the second metal-oxide layer. In one embodiment, the third metal-oxide layer is in contact with the free layer or fixed layer. The tunnel barrier may also include a fourth metal-oxide layer, having a thickness between 1 and 10 Angstroms, disposed between the second and third metal-oxide layers.
Abstract:
A magnetoresistive memory element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer having perpendicular magnetic anisotropy, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. A first surface of the first dielectric is in contact with a first surface of the free magnetic layer. The magnetoresistive memory element further includes a second dielectric, having a first surface that is in contact with a second surface of the free magnetic layer, a conductor, including electrically conductive material, and an electrode, disposed between the second dielectric and the conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion including at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.