摘要:
Micro-miniaturized semiconductor devices are fabricated with silicon-rich tantalum silicon nitride replacement metal gate electrodes. Embodiments include removing a removable gate, depositing a layer of tantalum nitride, as by PVD at a thickness of 25 Å to 75 Å, and then introducing silicon into the deposited tantalum nitride layer by thermal soaking in silane or silane plasma treatment to form a layer of silicon-rich tantalum silicon nitride. In another embodiment, the intermediate structure is subjected to thermal soaking in silane or silane plasma treatment before and after depositing the tantalum nitride layer. Embodiments further include pretreating the intermediate structure with silane prior to depositing the tantalum nitride layer, treating the deposited tantalum nitride layer with silane, and repeating these steps a number of times to form a plurality of sub-layers of silicon-rich tantalum silicon nitride.
摘要:
A silicon oxide layer is deposited at a thickness of about 50 Å or less by a multi-stage method comprising depositing a sub-layer of silicon oxide in each stage by PECVD at a low deposition rate. Embodiments include depositing a silicon dioxide liner over a gate electrode in at least four stages, each stage comprising depositing a sub-layer at a thickness of 10 Å or less.
摘要:
An organic memory cell having a CuX layer made by implantation is disclosed. The organic memory cell is made of two electrodes, at least one containing copper, with a controllably conductive media between the two electrodes. The controllably conductive media contains an organic semiconductor layer and CuX layer made by implantation of a Group VIB element.
摘要:
A method of manufacturing an integrated circuit is provided having a semiconductor wafer. A chemical-mechanical polishing stop layer is deposited on the semiconductor wafer and a first photoresist layer is processed over the chemical-mechanical polishing stop layer. The chemical-mechanical polishing stop layer and the semiconductor wafer are patterned to form a shallow trench and a shallow trench isolation material is deposited on the chemical-mechanical polishing stop layer and in the shallow trench. A second photoresist layer is processed over the shallow trench isolation material leaving the shallow trench uncovered. The uncovered shallow trench is then treated to become a chemical-mechanical polishing stop area. The shallow trench isolation material is then chemical-mechanical polished to be co-planar with the chemical-mechanical stop layer and the chemical-mechanical polishing stop treated area.
摘要:
A semiconductor device formed on a semiconductor substrate having an active region and a method of making the same is disclosed. The semiconductor device includes a dielectric layer interposed between a gate electrode and the semiconductor substrate. Further, the semiconductor device includes graded dielectric constant spacers formed on sidewalls of the dielectric layer, sidewalls of the gate electrode and portions of an upper surface of the semiconductor substrate. The dielectric constant of the graded dielectric constant spacers decreases in a direction away from the sidewalls of the dielectric layer.
摘要:
A semiconductor device and method of making the same includes a first metallization level, a first etch stop layer, a dielectric layer and an opening extending through the dielectric layer and the first etch stop layer. The first etch stop layer is disposed over the first metallization level. Metal within the opening forms a second metal feature, and the metal can comprise copper or a copper alloy. Dopants are introduced into the metal and are activated by laser thermal annealing. A concentration of the dopants within the metal in a lower portion of the second metal feature proximate the first metal feature is greater than a concentration of dopants in a central portion of the second metal feature, and a concentration of the dopants within the metal in an upper portion of the second metal feature is greater than a concentration of dopants in the central portion of the second metal feature.
摘要:
Reliable Cu interconnects are formed by filling an opening in a dielectric layer with Cu and then laser thermal annealing in NH3 to reduce copper oxide and to reflow the deposited Cu, thereby eliminating voids and reducing contact resistance. Embodiments include laser thermal annealing employing an NH3 flow rate of about 200 to about 2,000 sccn.
摘要:
The adhesion of a diffusion barrier or capping layer to a Cu or Cu alloy interconnect member is significantly enhanced by treating the exposed surface of the Cu or Cu alloy interconnect member: (a) under plasma conditions with ammonia and silane or dichlorosilane to form a copper silicide layer thereon; or (b) with an ammonia plasma followed by reaction with silane or dichlorosilane to form a copper silicide layer thereon. The diffusion barrier layer is then deposited on the copper silicide layer. Embodiments include electroplating or electroless plating Cu or a Cu alloy to fill a damascene opening in a dielectric interlayer, chemical mechanical polishing, then treating the exposed surface of the Cu/Cu alloy interconnect to form the copper silicide layer thereon, and depositing a silicon nitride diffusion barrier layer on the copper silicide layer.
摘要:
A method of forming ultra-shallow junctions in a semiconductor wafer forms the gate and source/drain junctions having upper surfaces at first metal suicide regions on the gate and source/drain junctions. These first metal silicide regions have a higher resistivity. Amorphous silicon is deposited on the first metal suicide regions by plasma enhanced chemical vapor deposition (PECVD). The PECVD process may be a lower pressure deposition process, performed at multiple stations to form the amorphous silicon layer in multiple layers. This creates a more uniform amorphous silicon layer across the wafer and different patterning densities, thereby improving device performance and characteristics. Annealing is then performed to form second metal silicide regions of a lower resistivity, by diffusion reaction of the first metal silicide regions and the amorphous silicon that was deposited by the PECVD process.
摘要:
A method of making organic memory cells made of two electrodes with a controllably conductivce media between the two electrodes is disclosed. The controllably conductive media contains an organic semiconductor layer and passive layer. The organic semiconductor layer is formed using spin-on techniques with the assistance of certain solvents.