Abstract:
Semiconductor devices and related fabrication methods are provided. An exemplary fabrication method involves forming a pair of gate structures having a dielectric region disposed between a first gate structure of the pair and a second gate structure of the pair, and forming a voided region in the dielectric region between the first gate structure and the second gate structure. The first and second gate structures each include a first gate electrode material, wherein the method continues by removing the first gate electrode material to provide second and third voided regions corresponding to the gate structures and forming a second gate electrode material in the first voided region, the second voided region, and the third voided region.
Abstract:
A semiconductor device includes a high-k metal gate electrode structure that is positioned above an active region, has a top surface that is positioned at a gate height level, and includes a high-k dielectric material and an electrode metal. Raised drain and source regions are positioned laterally adjacent to the high-k metal gate electrode structure and connect to the active region, and a top surface of each of the raised drain and source regions is positioned at a contact height level that is below the gate height level. An etch stop layer is positioned above the top surface of the raised drain and source regions and a contact element connects to one of the raised drain and source regions, the contact element extending through the etch stop layer and a dielectric material positioned above the high-k metal gate electrode structure and the raised drain and source regions.
Abstract:
Disclosed herein are various methods of forming replacement gate structures and conductive contacts on semiconductor devices and devices incorporating the same. One exemplary device includes a plurality of gate structures positioned above a semiconducting substrate, at least one sidewall spacer positioned proximate respective sidewalls of the gate structures, and a metal silicide region in a source/drain region of the semiconducting substrate, the metal silicide region extending laterally so as to contact the sidewall spacer positioned proximate each of the gate structures. Furthermore, the device also includes, among other things, a conductive contact positioned between the plurality of gate structures, the conductive contact having a lower portion that conductively contacts the metal silicide region and an upper portion positioned above the lower portion, wherein the lower portion is laterally wider than the upper portion and extends laterally so as to contact the sidewall spacers positioned proximate each of the gate structures.
Abstract:
The present disclosure relates to manufacturing techniques and respective semiconductor devices in which the capping material of gate electrode structures may be removed together with portions of the capping material of resistors on the basis of a highly controllable directional etch process, wherein raised drain and source regions may be protected on the basis of a fill material.
Abstract:
The present disclosure relates to manufacturing techniques and respective semiconductor devices in which the capping material of gate electrode structures may be removed together with portions of the capping material of resistors on the basis of a highly controllable directional etch process, wherein raised drain and source regions may be protected on the basis of a fill material.
Abstract:
A method of forming contacts includes forming a plurality of transistor devices separated by shallow trench insulator regions, the transistor devices each comprising a semiconductor substrate, a buried insulator layer on the semiconductor bulk substrate, a semiconductor layer on the buried insulator layer, a high-k metal gate stack on the semiconductor layer and a gate electrode above the high-k metal gate stack, raised source/drain regions on the semiconductor layer, and a silicide contact layer above the raised source/drain regions and the gate electrode, providing an interlayer dielectric stack on the silicide contact layer and planarizing the interlayer dielectric stack, patterning a plurality of contacts through the interlayer dielectric stack onto the raised source/drain regions, and, for at least some of the contacts, patterning laterally extended contact regions above the contacts, the laterally extended contact regions extending over shallow trench insulator regions neighboring the corresponding raised source/drain regions.
Abstract:
When forming sophisticated semiconductor devices requiring resistors based on polysilicon material having non-silicided portions, the respective cap material for defining the silicided portions may be omitted during the process sequence, for instance, by using a patterned liner material or by applying a process strategy for removing the metal material from resistor areas that may not receive a corresponding metal silicide. By implementing the corresponding process strategies, semiconductor devices may be obtained with reduced probability of contact failures, with superior performance due to relaxing surface topography upon forming the contact level, and/or with increased robustness with respect to contact punch-through.
Abstract:
A semiconductor circuit element includes a first semiconductor device positioned in and above a first active region of a semiconductor substrate and a second semiconductor device positioned in and above a second active region of the semiconductor substrate. The first semiconductor device includes a first gate structure having a first gate dielectric layer that includes a first high-k material, and the second semiconductor device includes a second gate structure having a second gate dielectric layer that includes a ferroelectric material that is different from the first high-k material.
Abstract:
A method includes forming a plurality of openings extending through a semiconductor layer, through a buried insulating layer, and into a substrate material in a second device region of a semiconductor device while covering a first device region of the semiconductor device. An insulating material is formed on sidewalls and on a bottom face of each of the plurality of openings, and a first capacitor electrode is formed in each of the plurality of openings in the presence of the insulating material, wherein each of the first capacitor electrodes includes a conductive material and partially fills a respective one of the plurality of openings.
Abstract:
A method of manufacturing a flash memory cell is provided including forming a plurality of semiconductor fins on a semiconductor substrate, forming floating gates for a sub-set of the plurality of semiconductor fins and forming a first insulating layer between the plurality of semiconductor fins. The first insulating layer is recessed to a height less than the height of the plurality of semiconductor fins and sacrificial gates are formed over the sub-set of the plurality of semiconductor fins. A second insulating layer is formed between the sacrificial gates and, after that, the sacrificial gates are removed. Recesses are formed in the first insulating layer and sense gates and control gates are formed in the recesses for the sub-set of the plurality of semiconductor fins. The first and second insulating layers may be oxide layers.