Abstract:
An emitting direction control apparatus for a lamp is provided with: a driver for deflecting an emitting direction for a lamp; and a controller that control the driver to perform a deflection. The controller includes an initialization function, for setting, at an initial position, a stepping motor that serves as a driving source for the driver. The initialization function detects a first current positional angle for the stepping motor; when the first current positional angle is greater than a reference angle, rotates the stepping motor in a bumping direction at a high speed until the reference angle is reached; after the reference angle has been reached,. rotates the stepping motor to a bumped position an initial number of steps at a low speed; and after the bumped position has been reached, rotates the stepping motor in the reverse direction a predetermined number of steps and sets the stepping motor in the initial position.
Abstract:
A dimming device is provided by using a material which is capable of transitioning between a metallic reflection state and a transmitting state. The dimming device has a layered structure including a first layer and a second layer, such that the light reflectance of the first layer changes in response to an external stimulation. The first layer contains a first material whose optical characteristics change in accordance with a concentration of a specific element. The second layer contains a second material capable of containing the specific element, the second material releasing or absorbing the specific element in accordance with the external stimulation.
Abstract:
A display apparatus includes a display panel 110 including a light emitting device 120 for each of a plurality of pixels, and a light receiving device 130 provided on the display panel 110 for each of the plurality of pixels. The display panel 110 displays an image by using light output from the light emitting device 120 toward the panel front side. The light receiving device 130 receives a portion of light output from the light emitting device 120 toward the panel back side that is reflected by an irradiated object 10 located on the panel back side. Since the light used for displaying an image and the light used for reading an image are commonly output from the light emitting device 120, it is possible to display and read image information with a simple, thin and light-weight structure.
Abstract:
A headlamp device for a vehicle includes a first light distribution controlling portion moving light irradiated forward from a light source in a lateral direction of the vehicle, and a second light distribution controlling portion moving the light irradiated forward from the light source in a vertical direction of the vehicle. A light distribution is controlled in response to a signal sent from the first light distribution controlling portion to the second light distribution controlling portion.
Abstract:
A lighting system for vehicles including a plurality of dimmer lamps, a steering sensor, and an electronic control unit (ECU). The dimmer lamps are provided at the front of a vehicle in its moving direction, and their radiated ranges differ from each other and their quantity of light also varies, according to the steering angle as sensed by the steering sensor. The ECU changes the combination of radiated ranges of the lamps to realize light distribution control ahead and sideways of a vehicle by turning-on/off the lamps, as well as changes the quantity of light of each lamp according to the wheel steering angle. The ECU sequentially turns on the lamps according to the steering angle and increases the corresponding quantity of radiation in proportion to the magnitude of the steering angle. Thus, the radiated range gradually expands in the vehicle's turning direction and its brightness gradually increases.
Abstract:
In a color changing lamp equipped with a bulb 4 emitting a color of light, a glove with a different color from the color is selectively located on the covering position and exposure position of the bulb 4 in order to emit the different color of light. The current supply for the bulb 4 is stopped while the glove is selectively moved, thereby preventing different colors of light in a mixed state from being emitted on the way of exchange.
Abstract:
An anode 2 is formed on an element substrate 1. By using a film-forming solution containing a stacking material that forms an organic layer 43, a film is formed on a donor substrate 10 to pattern a transfer layer 11, thereby fabricating a transfer substrate 12. The transfer substrate 12 and the element substrate 1 are placed so as to face each other with spacers 13 interposed therebetween, such that the surface of the transfer substrate 12, which has the transfer layer 11 formed thereon, faces the element substrate 1 having the anode 2 formed thereon. The transfer substrate 12 and the element substrate 1 facing each other are held under vacuum conditions. The transfer substrate 12 is heated by a heat source 15 under the vacuum conditions to transfer the transfer layer 11 to the element substrate 1.
Abstract:
An organic EL element includes a substrate 20, a lower electrode 21, an upper electrode 26, and an organic layer 22. The organic layer 22 is provided between the upper and lower electrodes 21, 26. The upper and lower electrodes 21, 26 and the organic layer 22 are stacked on the substrate 20. A hole injection layer 23 and a light emitting layer 24 in the organic layer 22 are formed by using an electrospray method, and have a film-like structure in which fine particles are continuously bonded together.
Abstract:
A solar cell module according to the invention includes a solar cell; a light guiding portion including a first fluorescent substance having a faint color and that emits light having low luminosity factor, the light guiding portion absorbing part of light incident from the outside using the first fluorescent substance and transmitting a first light beam emitted from the first fluorescent substance toward the solar cell; and a converter disposed between the light guiding portion and the solar cell, the converter converting the first light beam incident from the light guiding portion into a second light beam to which the solar cell has higher spectral sensitivity than to the first light beam and causing the second light beam to be incident on the solar cell. Thus, when the solar cell module is used as a window, the solar cell module is highly transparent and highly efficiently generates power.