摘要:
Embodiments of a process comprising forming a pixel on a front side of a substrate, thinning the substrate, depositing a doped silicon layer on a backside of the thinned substrate, and diffusing a dopant from the doped silicon layer into the substrate. Embodiments of an apparatus comprising a pixel formed on a front side of a thinned substrate, a doped silicon layer formed on a backside of the thinned substrate, and a region in the thinned substrate, and near the backside, where a dopant has diffused from the doped silicon layer into the thinned substrate. Other embodiments are disclosed and claimed.
摘要:
A solid state image sensor comprises a CCD type image sensing device and a signal detector. This signal detector comprises an FDA type signal detection circuit connected to a signal pick-up terminal of the image sensing device and having a small amount of saturating signals and low noise, an FDA type signal detection circuit connected to the signal pick-up terminal and having a large amount of saturating signals and high noise, and a signal composing circuit for composing the outputs of both signal detection circuits and outputting a composed output and changing a composing ratio in accordance with the output of the FDA type signal detection circuit.
摘要:
A solid image pickup apparatus comprises a plurality of photo sensing elements, arranged on a semiconductor substrate two-dimensionally and spaced mutually by specified distances, for outputting electric charges on receiving light, a semiconductor channel formed among the photo sensing elements and transferring electric charges output from the photo sensing elements. The semiconductor channel comprises cross-shaped channel members, each channel member being located inside four photo sensing elements. A plurality of vertical transfer electrodes, are provided on the channel members, for giving electric potential to the channel members and having electric charges transferred to the channel members of the next stages. Each of the channel members comprises a wide-width part and a narrow-width part located between the wide-width part and the channel member of the next stage. The narrow-width part is formed by an ion-implanting method to have a higher impurity concentration than that of the wide-width part.
摘要:
Circuitry to reduce signal noise characteristics in an image sensor. In an embodiment, a bit trace line segment is located between neighboring respective segments of a source follower power trace and an additional trace which is to remain at a first voltage level during a pixel cell readout time period. In another embodiment, for each such trace segment, a smallest separation between the trace segment and the respective neighboring other one of such trace segments is substantially equal to or less than some maximum length to provide for parasitic capacitance between the bit line trace and one or more other traces.
摘要:
A backside illuminated imaging sensor includes a semiconductor having an imaging pixel that includes a photodiode region, an insulator, and a silicide reflective layer. The photodiode region is formed in the frontside of the semiconductor substrate. The insulation layer is formed on the backside of the semiconductor substrate. The transparent electrode formed on the backside of the insulation layer. The transparent electrode allows light to be transmitted through a back surface of the semiconductor substrate such that when the transparent electrode is biased, carriers are formed in a region in the backside of the semiconductor substrate to reduce leakage current. ARC layers can be used to increase sensitivity of the sensor to selected wavelengths of light.
摘要:
An array of pixels is formed using a semiconductor layer having a frontside and a backside through which incident light is received. Each pixel typically includes a photosensitive region formed in the semiconductor layer and a trench formed adjacent to the photosensitive region. The trench causes the incident light to be directed away from the trench and towards the photosensitive region.
摘要:
An apparatus for measuring the power frequency of a light source includes a photo-sensitive transistor, a modulators and a logic unit. The photo-sensitive transistor generates an electrical signal that is responsive to light incident thereon from the light source. The modulator generates a modulated signal based on the electrical signal that toggles at a rate substantially proportional to the power frequency of the light source. The logic unit is coupled to receive the modulated signal and determine its toggling frequency.
摘要:
A backside illuminated imaging sensor includes a semiconductor having an imaging pixel that can include a photodiode region, an insulation layer, and a reflective layer. The photodiode is typically formed in the frontside of the semiconductor substrate. A surface shield layer can be formed on the frontside of the photodiode region. A light reflecting layer can be formed using silicided polysilicon on the frontside of the sensor. The photodiode region receives light from the back surface of the semiconductor substrate. When a portion of the received light propagates through the photodiode region to the light reflecting layer, the light reflecting layer reflects the portion of light received from the photodiode region towards the photodiode region. The silicided polysilicon light reflecting layer also forms a gate of a transistor for establishing a conductive channel between the photodiode region and a floating drain.
摘要:
An array of pixels is formed using a substrate having a frontside and a backside that is for receiving incident light. Each pixel typically includes metallization layers included in the frontside of the substrate, a photosensitive region formed in the backside of the substrate, and a trench formed around the photosensitive region in the backside of the substrate. The trench causes the incident light to be directed away from the trench and towards the photosensitive region.
摘要:
An array of pixels is formed using a substrate having a frontside and a backside that is for receiving incident light. Each pixel typically includes metallization layers included in the frontside of the substrate, a photosensitive region formed in the backside of the substrate, and a trench formed around the photosensitive region in the backside of the substrate. The trench causes the incident light to be directed away from the trench and towards the photosensitive region.