摘要:
The invention relates to low-alkali or alkali-free alkaline-earth aluminoborosilicate glasses of the following composition (in wt.-% on an oxide basis) SiO2>49-65; B2O3 0.5-4.5; Al2O3>10-23; MgO>2.7-7; CaO 0.5-10; SrO>15-22; BaO 0.5-7; provided that MgO+CaO+SrO+BaO>20-35; SnO2 0-2; ZrO2 0-2; ZrO2 0-2; TiO20-2; CeO20-1.5; ZnO 0-1; Na2O 0-2; K2O 0-2; provided that Na2O+K2O equals 0-3. The inventive glasses are especially suitable for use as substrates in thin film photovoltaic technology and as glasses for bulbs.
摘要:
A method and apparatus for producing a multiplicity of holes in thin sheet-like workpieces of dielectric material or semiconductors is provided. The perforation points are marked by HF coupling points and caused to soften using HF energy in order to obtain dielectric breakdowns. The breakdowns are then widened into holes.
摘要:
An apparatus for producing holes in dielectric workpieces in the form of thin sheets and substrates, in particular of glass or glass-like materials and semiconductors is provided. The apparatus includes individual high-voltage electrodes that are symmetrically arranged on an electrode holder around the hole to be produced in the workpiece. The apparatus also includes individual counter electrodes that are arranged on a counter electrode holder. The electrodes and counter electrodes can be connected in a permutating manner to a high-voltage source for the discharge of high-voltage flashovers.
摘要:
The glass fiber for an optical amplifier has a glass core, a first glass cladding, and a second glass cladding. The core has a composition, in mol %, of Bi2O3, 30-60; SiO2, 0.5-40; B2O3, 0.5-40; Al2O3, 0-30; Ga2O3, 0-20; Ge2O3, 0-25; La2O3, 0-15; Nb2O5, 0-10; SnO2, 0-30; alkali metal oxides, 0-40; and Er2O3, 0.05-8. The process for making the glass fiber includes first making a preform consisting of the core and the first glass cladding by drawing from a double crucible. Then the second glass cladding is formed around the preform by a rod-in-tube process. The glass claddings have a composition that includes a transition metal compound as an absorbent.
摘要:
The present invention relates to optoceramics and refractive, transmissive or diffractive optical elements manufactured thereof, their use and an optical imaging system. These optoceramics and optical elements are transparent to visible light and/or infrared radiation. The optoceramics consist of a crystal matrix, i.e. of polycrystalline material, wherein at least 95% by weight, preferably at least 98% by weight of the single crystallites have cubic pyrochlore or fluorite structure.
摘要:
The invention relates to bismuth oxide glass, containing germanium oxide, a method for the production thereof, the use thereof and a glass fiber consisting of said inventive glass.
摘要:
The invention is directed to a lighting device, particularly a high-pressure metal halide lamp, wherein a material combination of the body, frit and base materials is selected such that: a. the Coefficient of Thermal Expansion of the material of the frit material (CTEfrit) matches with the Coefficients of Thermal Expansion of the material of the lamp base (CTEbase) and the material of the body (CTEbody), respectively, or, b. the material of the frit (CTEfrit) bridges with the Coefficients of Thermal Expansion of the material of the lamp base (CTEbase) and the material of the body (CTEbody), respectively, at least at the joining surfaces of the body, frit and base materials, to sustain a hermetic bonding and withstand pressure and temperature conditions.
摘要:
The invention relates to a device for the production of high-melting glass materials or high-melting glass ceramic materials, comprising a vessel for accommodating molten glass and a container that accommodates the vessel, whereby the vessel has a tubular outlet. According to the invention, the device is characterised by the fact that the vessel and a first section of the tubular outlet if formed of iridium or a material with a high iridium content, whereby the container is designed to accommodate the vessel and the first section of the tubular outlet under a protective gas atmosphere. The invention also relates to a corresponding method. The molten glass is shaped into a formed part in a discontinuous operation. The choice of the material for the vessel used as the crucible allows the attainment of high temperatures according to the invention which enables glass materials or glass ceramic materials with a much higher spectral transmission in the visible wavelength range. The use of an inert protective gas enables the prevention of unwanted oxide formation on the vessel and the tubular outlet. According to the invention, the glass can be used as a transitional glass between types of glass with very different coefficients of thermal expansion.
摘要:
The invention relates a alkali-free aluminoborosilicate glasses having the following composition (in % by weight, based on oxide): SiO2 50-70, B2O3 0.5-15, Al2O3 10-25, MgO 0-10, CaO 0-12, SrO 0-12, BaO 0-15, with MgO+CaO+SrO+BaO 8-26, ZnO 0-10, ZrO2 0-5, TiO2 0-5, SnO2 0-2, MoO3 0.05-2. The glasses are particularly suitable as substract glasses for display and photovoltaic applications.
摘要翻译:本发明涉及具有以下组成(以重量%计,基于氧化物)的无碱铝硼硅酸盐玻璃:SiO 2 50-70,B 2 O 3 0.5-15,Al 2 O 3 10-25,MgO 0-10,CaO 0-12,SrO 0-12,BaO 0-15,MgO + CaO + SrO + BaO 8-26,ZnO 0-10,ZrO 2 0-5,TiO 2 0-5,SnO 2 0-2,MoO 3 0.05-2。 眼镜特别适用于显示器和光伏应用的减光眼镜。
摘要:
A transparent, polycrystalline ceramic is described. The ceramic comprises crystallites of the formula AxCuByDvEzFw, whereby A and C are selected from the group consisting of Li+, Na+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Al3+, Ga3+, In3+, C4+, Si4+, Ge4+, Sn2+/4+, Sc3+, Ti4+, Zn2+, Zr4+, Mo6+, Ru4+, Pd2+, Ag2+, Cd2+, Hf4+, W4+/6+, Re4+, Os4+, Ir4+, Pt2+/4+, Hg2+ and mixtures thereof, B and D are selected from the group consisting of Li+, Na+, K+, Mg2+, Al3+, Ga3+, In3+, Si4+, Ge4+, Sn4+, Sc3+, Ti4+, Zn2+, Y3+, Zr4+, Nb3+, Ru3+, Rh3+, La3+, Lu3+, Gd3+ and mixtures thereof, E and F are selected mainly from the group consisting of the divalent anions of S, Se and O and mixtures thereof, x, u, y, v, z and w satisfy the following formulae 0.125