摘要:
Assemblies, systems, and methods related to remotely-steerable ablation procedures are described. A necked-down ablation catheter may be coupled within a working lumen of a robotically-steerable sheath configured to be driveably coupled to an electromechanical instrument driver. The ablation catheter may be an irrigated ablation catheter having an irrigation fluid reservoir at its distal tip. The outer diameter of the distal portion of the ablation catheter is generally larger than that of the more proximal aspects due, in part, to the fact that the proximal aspects are designed to fit through a relatively low-profile steerable sheath.
摘要:
A medical instrument system includes an elongate flexible instrument body with an optical fiber substantially encapsulated in a wall of the instrument body, the optical fiber including one or more fiber gratings. A detector is operatively coupled to the optical fiber and configured to detect respective light signals reflected by the one or more fiber gratings. A controller is operatively coupled to the detector, and configured to determine a twist of at least a portion of the instrument body based on detected reflected light signals. The instrument may be a guide catheter and may be robotically or manually controlled.
摘要:
An alignment system comprising a rectangular leadframe from the interior of which extend leads to terminations arrangement for alignment and registration with the braze pads of a ceramic integrated circuit package, the alignment and registration being maintained and defined by a web bar interconnecting the leads adjacent the between those braze pads and the leadframe. The leadframe, leads and web bar being integrally formed by etching and lying in a plane.
摘要:
An instrument system that includes a first optical fiber, a second optical fiber and a controller is provided. The first optical fiber is operatively coupled to an elongate body that is adapted to be placed inside a patient. The second optical fiber is operatively coupled to the patient, to an actuating element adapted to actuate the elongate body, or to a portion of an imaging system adapted to identify a location of the portion relative to the elongate body. The controller is operatively coupled to the first optical fiber and the second optical fiber and is adapted to receive a first signal from the strain sensor provided on the first optical fiber, receive a second signal from the strain sensor provided on the second optical fiber; and determine a position or orientation of the elongate body based on the first signal and based on the second signal.
摘要:
An instrument system that includes an elongate body, an optical fiber, a localization sensor and a controller is provided. The optical fiber is operatively coupled to the elongate body and has a strain sensor provided on the optical fiber. The localization sensor is operatively coupled to the elongate body. The controller is operatively coupled to the optical fiber and to the localization sensor and is adapted to receive a first signal from the strain sensor, receive a second signal from the localization sensor, and determine a position or orientation of the elongate body based on the first signal and the second signal.
摘要:
Systems and methods that utilize shape sensing fibers are described herein. In certain variations, a fiber may include a service loop or other length that allows for sliding or displacing of a fiber within the lumen of an elongate instrument when the distal portion of the elongate instrument is articulated. Systems and methods for registering a shape sensing fiber, including registration fixtures and registration techniques are also described herein.
摘要:
A method for measuring bending is provided. The method includes receiving a reflected signal from a strain sensor provided on an optical fiber; determining a spectral profile of the reflected signal; and determining bending of the optical fiber based on a comparison of the spectral profile of the reflected signal with a predetermined spectral profile.
摘要:
Systems and methods are described for automating aspects of minimally invasive therapeutic treatment of patients. In one embodiment a robotic catheter system may comprise a controller including a master input device; and an electromechanically steerable elongate instrument having a proximal interface portion and a distal portion, the proximal interface portion being configured to be operatively coupled to an electromechanical instrument driver in communication with the controller, the distal portion being configured to be interactively navigated adjacent internal tissue structures of a patient's body in response to signals from the controller; wherein the distal portion of the elongate instrument comprises an antenna operatively coupled to the controller, and wherein the controller is configured to determine the temperature of structures adjacent to the distal portion of the elongate instrument utilizing radiometry analysis.
摘要:
Medical diagnostic ultrasound catheters are provided with improved materials for dielectric withstand strength. In one aspect, the catheter includes a braid of non-conductive material. The non-conductive braid reduces the capacitive: coupling effects and allows smaller catheters or a greater number of conductors. The non-conductive braid provides both compressive and tensile strength to transmit the torque applied to the catheter. The non-conductive braid also allows fusing of components while decreasing the risk of defective manufacture. In another aspect, a dielectric film, such as a polyester film, is positioned between the transducer and any lens or window. The dielectric film allows thinner window lenses to be used, allowing smaller catheters or larger transducers. The dielectric film may also increase the sensitivity of the transducer to acoustic energy. The dielectric film prevents the lens or window material from filling kerfs in the transducer, which may eliminate the need for filling the kerfs of the transducer.
摘要:
This invention resides in a curing process for adhesive on a housing member of a tape automated bonding section (TAB section). A force is applied to the housing member and then the entire TAB section is heated to a sufficient temperature and for a sufficient duration to cure the adhesive. The applied force, coupled with the heat squeezes a portion of the adhesive out from between the TAB section and the housing member and onto an inner portion of the outer leads before the adhesive cures. This embeds the inner portion of the outer leads with adhesive so that they are retained in alignment with and electrically isolated from each other.The manner in which the force is applied to the housing member during the curing process is also a novel feature of the invention. The TAB section within the carrier frame is placed on a pedestal in a mounting fixture. A compressor block is then disposed against the TAB section. A compressor bar clamped over the compressor block and to the mounting fixture urges the compressor block against the TAB section. This also causes a centrally-located spring loaded plunger within the compressor block to push against the semiconductor chip but with a reduced force. This reduced force presses the chip against a housing member aperture so that a silver epoxy mounted in the aperture can evenly disperse over the semiconductor chip.