Abstract:
Methods and systems for detecting defects on a wafer using adaptive local thresholding and color filtering are provided. One method includes determining local statistics of pixels in output for a wafer generated using an inspection system, determining which of the pixels are outliers based on the local statistics, and comparing the outliers to the pixels surrounding the outliers to identify the outliers that do not belong to a cluster of outliers as defect candidates, The method also includes determining a value for a difference in color between the pixels of the defect candidates and the pixels surrounding the defect candidates. The method further includes identifying the defect candidates that have a value for the difference in color greater than or equal to a predetermined value as nuisance defects and the defect candidates that have a value for the difference in color less than the predetermined value as real defects,
Abstract:
A method includes identifying a first set of a first care area with a first sensitivity threshold, the first care area associated with a first design of interest within a block of repeating cells in design data; identifying an additional set of an additional care area with an additional sensitivity threshold, the additional care area associated with an additional design of interest within the block of repeating cells in design data; identifying one or more defects within the first set of the first care areas in one or more images of a selected region of a sample based on the first sensitivity threshold; and identifying one or more defects within the additional set of the additional care areas in the one or more images of the selected region of the sample based on the additional sensitivity threshold.
Abstract:
Methods and systems for design based sampling and binning for yield critical defects are provided. One method includes aligning each image patch in each inspection image frame generated for a wafer by an optical subsystem of an inspection system to design information for the wafer. The method also includes deriving multiple layer design attributes at locations of defects detected in the image patches. In addition, the method includes building a decision tree with the multiple layer design attributes. The decision tree is used to separate the defects into bins with different yield impacts on a device being formed on the wafer. The method also includes binning the defects with the decision tree.
Abstract:
Methods and systems for detecting defects on a wafer using defect-specific and multi-channel information are provided. One method includes acquiring information for a target on a wafer. The target includes a pattern of interest (POI) formed on the wafer and a known defect of interest (DOI) occurring proximate to or in the POI. The method also includes detecting the known DOI in target candidates by identifying potential DOI locations based on images of the target candidates acquired by a first channel of an inspection system and applying one or more detection parameters to images of the potential DOI locations acquired by a second channel of the inspection system. Therefore, the image(s) used for locating potential DOI locations and the image(s) used for detecting defects can be different.
Abstract:
In an optical inspection tool, an illumination aperture is opened at each of a plurality of aperture positions of an illumination pupil area one at a time across the illumination pupil area. For each aperture opening position, an incident beam is directed towards the illumination pupil area so as to selectively pass a corresponding ray bundle of the illumination beam at a corresponding set of one or more incident angles towards the sample and an output beam, which is emitted from the sample in response to the corresponding ray bundle of the incident beam impinging on the sample at the corresponding set of one or more incident angles, is detected. A defect detection characteristic for each aperture position is determined based on the output beam detected for each aperture position. An optimum aperture configuration is determined based on the determined defect detection characteristic for each aperture position.
Abstract:
Methods and systems for filtering scratches from wafer inspection results are provided. One method includes generating a defect candidate map that includes image data for potential defect candidates as a function of position on the wafer and removing noise from the defect candidate map to generate a filtered defect candidate map. The method also includes determining one or more characteristics of the potential defect candidates based on portions of the filtered defect candidate map corresponding to the potential defect candidates. In addition, the method includes determining if each of the potential defect candidates are scratches based on the one or more characteristics determined for each of the potential defect candidates and separating the potential defect candidates determined to be the scratches from other defects in inspection results for the wafer.
Abstract:
Systems and methods for determining one or more parameters of a wafer inspection process are provided. One method includes aligning optical image(s) of an alignment target to their corresponding electron beam images generated by an electron beam defect review system. The method also includes determining different local coordinate transformations for different subsets of alignment targets based on results of the aligning. In addition, the method includes determining positions of defects in wafer inspection system coordinates based on coordinates of the defects determined by the electron beam defect review system and the different local coordinate transformations corresponding to different groups of the defects into which the defects have been separated. The method further includes determining one or more parameters for an inspection process for the wafer based on defect images acquired at the determined positions by a wafer inspection system.
Abstract:
Disclosed are methods and apparatus for optimizing a mode of an inspection tool. A first image or signal for each of a plurality of first apertures of the inspection tool is obtained, and each first image or signal pertains to a defect area. For each of a plurality of combinations of the first apertures and their first images or signals, a composite image or signal is obtained. Each composite image or signal is analyzed to determine an optimum one of the combinations of the first apertures based on a defect detection characteristic of each composite image.
Abstract:
Methods and systems for detecting defects on a wafer using defect-specific information are provided. One method includes acquiring information for a target on a wafer. The target includes a pattern of interest formed on the wafer and a known DOI occurring proximate to or in the pattern of interest. The information includes an image of the target on the wafer. The method also includes searching for target candidates on the wafer or another wafer. The target candidates include the pattern of interest. The target and target candidate locations are provided to defect detection. In addition, the method includes detecting the known DOI in the target candidates by identifying potential DOI locations in images of the target candidates and applying one or more detection parameters to images of the potential DOI locations.
Abstract:
Systems and methods for detecting defects on a wafer are provided. One method includes generating output for a wafer by scanning the wafer with an inspection system using first and second optical states of the inspection system. The first and second optical states are defined by different values for at least one optical parameter of the inspection system. The method also includes generating first image data for the wafer using the output generated using the first optical state and second image data for the wafer using the output generated using the second optical state. In addition, the method includes combining the first image data and the second image data corresponding to substantially the same locations on the wafer thereby creating additional image data for the wafer. The method further includes detecting defects on the wafer using the additional image data.