Abstract:
A method of wet cleaning an aluminum part having bare aluminum surfaces and anodized aluminum surfaces. The method includes CO2 dry ice blasting the surfaces of the aluminum part at approximately 35 to approximately 45 psi, masking the aluminum part to conceal the bare aluminum surfaces, soaking the dry ice blasted and masked aluminum part in deionized water at or above approximately 60° C., scrubbing the aluminum part with an abrasive pad and deionized water after completion of the soaking in deionized water, and repeating the soaking and scrubbing in the recited order at least three additional times.
Abstract:
A method of making a monolithic ceramic component of a gas delivery system of a semiconductor substrate processing apparatus wherein the gas delivery system is configured to supply process gas to a gas distribution member disposed downstream thereof. The gas distribution member is configured to supply the process gas to a processing region of a vacuum chamber of the apparatus, wherein the processing region is disposed above an upper surface of a semiconductor substrate to be processed. The method comprises preparing a green compact of ceramic material. The green compact of ceramic material is formed into a form of a desired monolithic ceramic component of the gas delivery system. The formed green compact of ceramic material is fired to form the monolithic ceramic component of the gas delivery system.
Abstract:
Components of semiconductor material processing chambers are disclosed, which may include a substrate and at least one corrosion-resistant coating formed on a surface thereof. The at least one corrosion-resistant coating is a high purity metal coating formed by a cold-spray technique. An anodized layer can be formed on the high purity metal coating. The anodized layer comprises a process-exposed surface of the component. Semiconductor material processing apparatuses including one or more of the components are also disclosed, the components being selected from the group consisting of a chamber liner, an electrostatic chuck, a focus ring, a chamber wall, an edge ring, a plasma confinement ring, a substrate support, a baffle, a gas distribution plate, a gas distribution ring, a gas nozzle, a heating element, a plasma screen, a transport mechanism, a gas supply system, a lift mechanism, a load lock, a door mechanism, a robotic arm and a fastener. Methods of making the components and methods of plasma processing using the components are also disclosed.
Abstract:
A palladium plated aluminum component of a semiconductor plasma processing chamber comprises a substrate including at least an aluminum or aluminum alloy surface, and a palladium plating on the aluminum or aluminum alloy surface of the substrate. The palladium plating comprises an exposed surface of the component and/or a mating surface of the component.