Abstract:
An apparatus for measuring contaminants on a surface of a component is provided. An extraction vessel for holding a measurement fluid has an opening adapted to form a meniscus using the measurement fluid. An actuator moves at least one of the extraction vessel and the component to a position where the meniscus is in contact with the surface of the component. A transducer is positioned to provide acoustic energy to the measurement fluid.
Abstract:
A method for conditioning ceramic coating on a part for use in a plasma processing chamber is provided. The ceramic coating is wetted with a solution, wherein the solution is formed by mixing a solvent with an electrolyte, wherein from 1% to 10% of the electrolyte dissociates in the solution. The ceramic coating is blasted with particles. The ceramic coating is rinsed.
Abstract:
A method for providing a part with a plasma resistant ceramic coating for use in a plasma processing chamber is provided. A patterned mask is placed on the part. A film is deposited over the part. The patterned mask is removed. A plasma resistant ceramic coating is applied on the part.
Abstract:
An adapter plate configured to be attachable to a universal platen of a cleaning unit for cleaning upper electrodes from a plasma processing chamber is disclosed, the adapter plate includes a support surface and a mounting surface configured to be fastened to the universal platen of the cleaning unit. The support surface is configured to support an inner electrode or an outer electrode of a showerhead electrode assembly for cleaning upper or lower surfaces thereof. The support surface having a first set of holes configured to receive pins engaged in an upper surface of the inner electrode, a second set of holes configured to receive pins surrounding an outer periphery of the inner electrode, a third set of holes configured to receive pins engaged in an upper surface of the outer electrode, and a fourth set of holes configured to receive pins surrounding an outer periphery of the outer electrode.
Abstract:
A process is provided for polishing a silicon electrode utilizing a polishing turntable and a dual function electrode platen secured to the polishing, which can comprise a plurality of electrode mounts arranged to project from an electrode engaging face of the dual function electrode platen. The electrode mounts and mount receptacles can be configured to permit non-destructive engagement and disengagement of the electrode engaging face of the electrode platen and the platen engaging face of the silicon electrode. The silicon electrode can be polished by (i) engaging the electrode engaging face of the electrode platen and the platen engaging face of the silicon electrode via the electrode mounts and mount receptacles, (ii) utilizing the polishing turntable to impart rotary, and (iii) contacting an exposed face of the silicon electrode with a polishing surface as the silicon electrode. Additional embodiments are contemplated, disclosed and claimed.
Abstract:
A method for treating a nonhomogeneous material surface of an object is provided. A plurality of test patches of the surface is treated for different amounts of time wherein the plurality of test patches have a total surface area. A property of each test patch is measured. A calibration curve of the property is generated with respect to time. The calibration curve and a target property are used to obtain a target time. A surface of the object with a surface area, which is greater than the total surface area of the plurality of test patches, is treated for the target time.
Abstract:
An adapter plate configured to be attachable to a universal platen of a cleaning unit for cleaning upper electrodes from a plasma processing chamber is disclosed, the adapter plate includes a support surface and a mounting surface configured to be fastened to the universal platen of the cleaning unit. The support surface is configured to support an inner electrode or an outer electrode of a showerhead electrode assembly for cleaning upper or lower surfaces thereof. The support surface having a first set of holes configured to receive pins engaged in an upper surface of the inner electrode, a second set of holes configured to receive pins surrounding an outer periphery of the inner electrode, a third set of holes configured to receive pins engaged in an upper surface of the outer electrode, and a fourth set of holes configured to receive pins surrounding an outer periphery of the outer electrode.
Abstract:
A tungsten carbide coated chamber component of semiconductor processing equipment includes a metal surface, optional intermediate nickel coating, and outer tungsten carbide coating. The component is manufactured by optionally depositing a nickel coating on a metal surface of the component and depositing a tungsten carbide coating on the metal surface or nickel coating to form an outermost surface.
Abstract:
A process is provided for polishing a silicon electrode utilizing a polishing turntable and a dual function electrode platen secured to the polishing, which can comprise a plurality of electrode mounts arranged to project from an electrode engaging face of the dual function electrode platen. The electrode mounts and mount receptacles can be configured to permit non-destructive engagement and disengagement of the electrode engaging face of the electrode platen and the platen engaging face of the silicon electrode. The silicon electrode can be polished by (i) engaging the electrode engaging face of the electrode platen and the platen engaging face of the silicon electrode via the electrode mounts and mount receptacles, (ii) utilizing the polishing turntable to impart rotary, and (iii) contacting an exposed face of the silicon electrode with a polishing surface as the silicon electrode. Additional embodiments are contemplated, disclosed and claimed.
Abstract:
An apparatus for conditioning a component of a processing chamber is provided. A tank for holding a megasonic conditioning solution is provided. A mount holds the component immersed in a megasonic conditioning solution, when the tank is filled with the megasonic conditioning solution. A megasonic conditioning solution inlet system delivers the megasonic conditioning solution to the tank. A megasonic transducer head comprises at least one megasonic transducer to provide megasonic energy to the megasonic conditioning solution, wherein the megasonic energy is delivered to the component via the megasonic conditioning solution. A megasonic conditioning solution drain system drains the megasonic conditioning solution from the tank at a location above where the component is held in the megasonic conditioning solution. An actuator moves the megasonic transducer head across the tank.