摘要:
A method of polymerizing poly(cyclic)olefin monomers encompassing (a) combining a monomer composition containing the poly(cyclic)olefin monomers, a non-olefinic chain transfer agent and an activator compound to form a mixture; (b) heating the mixture; and (c) adding a polymerization catalyst containing Ni and/or Pd. The non-olefinic chain transfer agent includes one or more compounds selected from H2, alkylsilanes, alkylalkoxysilanes, alkylgermanes, alkylalkoxygermanes, alkylstannanes, and alkylalkoxystannanes. The activator is characterized as having an active hydrogen with a pKa of at least 5. The resulting poly(cyclic)olefin polymers can be used in photoresist compositions.
摘要:
The present invention relates to polycyclic polymers, methods for producing polycyclic polymers, and methods for their use as photoresists in the manufacture of integrated circuits. In one embodiment, the present invention relates to photoresist compositions formed from the polymerization of at least one halogenated polycyclic monomer or hydrohalogenated polycyclic monomer. In another embodiment, the present invention relates to photoresist compositions formed from the co-polymerization of at least one halogenated polycyclic monomer or hydrohalogenated polycyclic monomer with at least one non-halogenated polycyclic monomer.
摘要:
Embodiments in accordance with the present invention encompass methods of forming in situ olefin polymerization catalyst systems, catalysts encompassed by such systems and polymers made using such systems. For such in situ olefin polymerization catalyst systems, a hydrocarbyl magnesium halide is generally contacted with a halohydrocarbyl compound to form a halohydrocarbyl Grignard and such Grignard is generally contacted with a Group 10 metal compound to form an olefin polymerization catalyst which is contacted with one or more olefin monomers to form a polymer therefrom.
摘要:
The present invention relates to polycyclic polymers, methods for producing polycyclic polymers, and methods for their use as photoresists in the manufacture of integrated circuits. In one embodiment, the present invention relates to photoresist compositions formed from the polymerization of at least one halogenated polycyclic monomer or hydrohalogenated polycyclic monomer. In another embodiment, the present invention relates to photoresist compositions formed from the co-polymerization of at least one halogenated polycyclic monomer or hydrohalogenated polycyclic monomer with at least one non-halogenated polycyclic monomer. Additionally, the present invention relates to methods by which to post-treat such photoresist compositions in order to obtain one or more of: (1) a reduction in optical density of the polymer composition; and (2) a reduction in the amount of residual metal and/or monomer in the polymer composition. Also disclosed are catalyst systems for use in producing the photoresist compositions of the present invention which permit molecular weight control of the photoresist products.
摘要:
Embodiments in accordance with the present invention provide for the use of polycycloolefins in electronic devices and more specifically to the use of such polycycloolefins as interlayers applied to fluoropolymer layers used in the fabrication of electronic devices, the electronic devices that encompass such polycycloolefin interlayers and processes for preparing such polycycloolefin interlayers and electronic devices.
摘要:
Embodiments in accordance with the present invention encompass methods of forming in situ olefin polymerization catalyst systems, catalysts encompassed by such systems and polymers made using such systems. For such in situ olefin polymerization catalyst systems, a hydrocarbyl magnesium halide is generally contacted with a halohydrocarbyl compound to form a halohydrocarbyl Grignard and such Grignard is generally contacted with a Group 10 metal compound to form an olefin polymerization catalyst which is contacted with one or more olefin monomers to form a polymer therefrom.
摘要:
Embodiments in accordance with the present invention provide for non-self imageable norbornene-type polymers useful for immersion lithographic processes, methods of making such polymers, compositions employing such polymers and immersion lithographic processes that make use of such compositions. More specifically the embodiments of the present invention are related to norbornene-type polymers useful for forming top-coat layers for overlying photoresist layers in immersion lithographic process and the process thereof.
摘要:
Polymers and compositions for forming self-imageable films encompassing such polymers that encompass norbornene-type repeating unit having at least one phenolic functionality and maleic anhydride-type repeating unit, which can be formulated to be either positive tone imaging or negative tone imaging. The films formed thereby are useful as self-imageable layers in the manufacture of microelectronic, such as semiconductor, and optoelectronic devices.
摘要:
Embodiments in accordance with the present invention provide for the use of polycycloolefins in electronic devices and more specifically to the use of such polycycloolefins as gate insulator layers used in the fabrication of electronic devices, the electronic devices that encompass such polycycloolefin gate insulator and processes for preparing such polycycloolefin gate insulator layers and electronic devices encompassing such layers.
摘要:
A polymer includes a first type of repeat unit represented by Formula I: where X is selected from —CH2—, —CH2—CH2—, or —O—; m is an integer from 0 to about 5; and where for the first type of repeat unit one of R1, R2, R3, and R4 is one of a maleimide containing group and for the second type of repeat unit one of R1, R2, R3, and R4 is a hindered aromatic group, a C8 or greater alkyl group, a C4 or greater halohydrocarbyl or perhalocarbyl group, a C7 or greater aralkyl group, or a heteroatom hydrocarbyl or halohydrocarbyl group.