Abstract:
A vehicular control system for a vehicle includes a plurality of sensors. Responsive to data processing, the vehicular control system determines respective speeds of the determined vehicles and respective directions of travel of the determined vehicles, and determines respective influence values for the determined vehicles based on determined potential hazards to the equipped vehicle presented by the respective determined vehicles. The determined respective influence value for each determined vehicle is weighted according to direction and/or magnitude of a speed vector of that determined vehicle. The weighted determined respective influence values for the determined vehicles are ranked according to their hazard potential. A path of travel is selected from the plurality of determined paths responsive at least in part to the rankings of the weighted determined respective influence values. The system at least in part controls vehicle steering to guide the equipped vehicle along the selected path of travel.
Abstract:
A lighting control system for a vehicle includes a controller configured to be disposed at a vehicle so as to connect with or communicate with at least one light of the vehicle. The controller, responsive to at least one input, adjusts a color of the at least one light of the vehicle and an intensity of the at least one light of the vehicle. The input may include one or more of (i) a driver attentiveness input and (ii) a driver age input, and optionally a time of day input, an ambient light input, a weather condition input, and/or a navigation input.
Abstract:
A driver assist system for a vehicle includes a camera, a receiver and a control. The camera has a field of view exterior of the vehicle and is operable to capture image data. The receiver is operable to receive a wireless communication from a communication device disposed at another vehicle. The control includes a data processor that processes captured image data to detect objects. The wireless communication includes a car-to-car communication. The driver assist system, responsive at least in part to processing by the data processor of captured image data and to the wireless communication received by the receiver, determines a potential hazard existing in a forward path of travel of the equipped vehicle. The control, responsive at least in part to such determination, controls at least one vehicle function of the equipped vehicle to mitigate the potential hazard in the forward path of travel of the equipped vehicle.
Abstract:
A driver assist system for a vehicle includes an object detection sensor disposed at the vehicle and having an exterior field of view and a receiver operable to receive a wireless communication from a communication device remote from the vehicle. The wireless communication is associated with a driving condition of another vehicle and/or a road condition of interest to the driver of the vehicle. A control is operable to process data captured by the object detection sensor to detect an object exterior of the vehicle. The driver assist system is operable to adjust the data processing responsive at least in part to the received wireless communication. Responsive to the data processing, an alert is operable to alert the driver of the vehicle of a potential hazard and/or a system of the vehicle is operable to control a vehicle function to mitigate or avoid a potential hazard condition.
Abstract:
A dynamic image stitching system for stitching images captured by multiple cameras of a vision system of a vehicle includes a first camera disposed at a vehicle and having a first field of view exterior the vehicle and a second camera disposed at the vehicle and having a second field of view exterior the vehicle. The first and second fields of view at least partially overlap. A processor is operable to process image data captured by the first and second cameras. The processor processes captured image data to determine characteristics of features or objects present in the overlapping region of the first and second fields of view. The processor is operable to adjust a stitching algorithm responsive to a determination of a difference between a characteristic of a feature as captured by the first camera and the characteristic of the feature as captured by the second camera.
Abstract:
A driver assistance system for a vehicle includes a plurality of sensors disposed at a vehicle and operable to detect objects at least one of ahead of the vehicle and sideward of the vehicle. The driver assistance system includes a data processor operable to process data captured by the sensors to determine the presence of objects ahead and/or sideward of the vehicle. Responsive to the data processing, the driver assistance system is operable to determine at least one of respective speeds of the determined objects and respective directions of travel of the determined objects. The driver assistance system is operable to determine respective influence values for the determined objects. Responsive to the respective determined speeds and/or directions of travel of the determined objects and responsive to the determined respective influence values, at least one path of travel for the vehicle is determined that limits conflict with the determined objects.
Abstract:
A vehicle vision system includes at least two cameras having exterior fields of view and an image processor that processes captured image data and compares image data in overlapping regions of fields of views of two or more adjacent or neighboring cameras at a vehicle (such as a corner region near a corner of the vehicle where a portion of the field of view of a side camera of the vehicle overlaps a portion of the field of view of a front or rear camera of the vehicle). The system processes a common data sub-set and different data sub-sets of image data captured by the cameras at the overlapping regions, and processes the common data sub-set differently from the other data sub-sets. The system may generate a synthesized image derived from the data sub-sets for displaying images at a display screen for viewing by the driver of the vehicle.
Abstract:
A vehicular control system includes a plurality of sensors disposed at a vehicle, and a control having a data processor. Data captured by the sensors is processed at the control to determine presence of other vehicles and to determine respective speeds and directions of travel of the determined vehicles. The system determines a respective influence value for each of the determined vehicles based on a respective determined potential hazard. The system determines a plurality of potential paths of travel for the equipped vehicle to follow based on the determined respective influence values for the determined vehicles. The system selects, from the determined plurality of potential paths of travel, a path of travel for the equipped vehicle to follow that limits conflict with the determined vehicles. The system at least in part controls steering of the equipped vehicle to guide the equipped vehicle along the selected path of travel.
Abstract:
A vehicular vision system includes a plurality of cameras disposed at a vehicle and capturing image data as the equipped vehicle is driven along a traffic lane of a road. Captured image data is processed to detect a rearward-approaching vehicle and determine a path of travel of the detected rearward-approaching vehicle. Responsive to determining that the path of travel of the detected rearward-approaching vehicle is along a side traffic lane adjacent to the traffic lane along which the equipped vehicle is driven, the vehicular vision system (i) displays at a video display screen video images derived at least from image data captured by the side camera that is at the side portion of the equipped vehicle that is adjacent to the side traffic lane and (ii) overlays a transparent graphic overlay overlaying the displayed video images that is based on the determined path of travel of the detected rearward-approaching vehicle.
Abstract:
A method for stitching image data captured by multiple vehicular cameras includes equipping a vehicle with a vehicular vision system having a control and a plurality of cameras disposed at the vehicle so as to have respective fields of view exterior the vehicle. Image data captured by first and second cameras of the plurality of cameras is processed to detect and track an object present in and moving within an overlapping portion of the fields of view of the first and second cameras. Image data captured by the first and second cameras is stitched, via processing provided captured image data, to form stitched images. Stitching of captured image data is adjusted responsive to determination of a difference between a feature of a detected and tracked object as captured by the first camera and the feature of the detected and tracked object as captured by the second camera.