Method of forming surface irregularities and method of manufacturing gallium nitride-based light emitting diode
    41.
    发明授权
    Method of forming surface irregularities and method of manufacturing gallium nitride-based light emitting diode 有权
    形成表面凹凸的方法和制造氮化镓基发光二极管的方法

    公开(公告)号:US07601621B2

    公开(公告)日:2009-10-13

    申请号:US11798083

    申请日:2007-05-10

    IPC分类号: H01L21/265

    CPC分类号: H01L33/22 H01L33/32

    摘要: A method of forming surface irregularities comprises preparing a GaN substrate; forming a mask on a surface of the GaN substrate, the mask defining a surface-irregularity formation region; and wet-etching portions of the surface of the GaN substrate by using the mask as an etching mask. The wet-etching of the GaN substrate is performed until the end of one surface of the GaN substrate to be formed by the wet-etching using the mask meets the end of another surface of the GaN substrate to be formed by the wet-etching using the mask, the another surface being adjacent to the one surface.

    摘要翻译: 形成表面凹凸的方法包括制备GaN衬底; 在所述GaN衬底的表面上形成掩模,所述掩模限定表面不规则形成区域; 以及通过使用掩模作为蚀刻掩模将GaN衬底的表面的湿蚀刻部分。 执行GaN衬底的湿蚀刻,直到通过使用掩模的湿蚀刻形成的GaN衬底的一个表面的端部与通过湿蚀刻形成的GaN衬底的另一表面的端部相接合,使用 该掩模,另一个表面与该表面相邻。

    Method of producing nitride layer and method of fabricating vertical structure nitride semiconductor light emitting device
    42.
    发明授权
    Method of producing nitride layer and method of fabricating vertical structure nitride semiconductor light emitting device 有权
    氮化物层的制造方法及垂直结构氮化物半导体发光元件的制造方法

    公开(公告)号:US07524692B2

    公开(公告)日:2009-04-28

    申请号:US11410052

    申请日:2006-04-25

    IPC分类号: H01L21/00

    摘要: The present invention provides methods for manufacturing a nitride layer and a vertical nitride semiconductor light emitting device. In manufacturing the nitride layer according to the invention, a sapphire substrate is prepared. A buffer layer made of a material having a melting point and a thermal conductivity higher than those of nitride is formed on the sapphire substrate. Also, the nitride layer is formed on the buffer layer. Then a laser beam is irradiated to an underside of the sapphire substrate to remove the nitride layer. According to the invention, the nitride layer is made of a material having a composition expressed by AlxInyGa(1-x-y)N, where 0≦x≦1, 0≦y≦1, and 0≦x+y≦1. In addition, the buffer layer is made of SiC.

    摘要翻译: 本发明提供了制造氮化物层和垂直氮化物半导体发光器件的方法。 在制造根据本发明的氮化物层时,制备蓝宝石衬底。 在蓝宝石衬底上形成由具有高于氮化物的熔点和导热率的材料制成的缓冲层。 此外,在缓冲层上形成氮化物层。 然后将激光束照射到蓝宝石衬底的下侧以除去氮化物层。 根据本发明,氮化物层由具有由Al x In y Ga(1-xy)N表示的组成的材料制成,其中0 <= x <= 1,0 <= y <= 1,0 <= x + y <= 1。 此外,缓冲层由SiC制成。

    Wavelength-convertible light emitting diode package
    43.
    发明申请
    Wavelength-convertible light emitting diode package 审中-公开
    波长可转换发光二极管封装

    公开(公告)号:US20070012940A1

    公开(公告)日:2007-01-18

    申请号:US11484758

    申请日:2006-07-12

    IPC分类号: H01L33/00

    摘要: The invention relates to a wavelength-convertible LED package including a package substrate having a lead frame, and an LED mounted on the package substrate and electrically connected to the lead frame. The wavelength-convertible LED package also includes a low refractive index region surrounding the LED, having a first refractive index, and a high refractive index layer formed on the low refractive index region, having a rough pattern on an upper surface thereof and a second refractive index higher than the first refractive index. The wavelength-convertible LED package further includes a resin part containing phosphor for converting the wavelength of light emitted from the LED, having a third refractive index lower than the second refractive index.

    摘要翻译: 本发明涉及一种波长可转换的LED封装,其包括具有引线框架的封装基板和安装在封装基板上并电连接到引线框架上的LED。 波长可变的LED封装还包括围绕LED的低折射率区域,具有第一折射率和形成在低折射率区域上的高折射率层,在其上表面上具有粗糙图案,并且具有第二折射率区域 指数高于第一折射率。 波长可变换LED封装还包括含有荧光体的树脂部分,用于转换从LED发射的光的波长,其具有低于第二折射率的第三折射率。

    White light emitting device
    44.
    发明申请
    White light emitting device 审中-公开
    白色发光装置

    公开(公告)号:US20070007541A1

    公开(公告)日:2007-01-11

    申请号:US11331751

    申请日:2006-01-13

    IPC分类号: H01L33/00

    CPC分类号: H01L33/08 H01L33/06 H01L33/32

    摘要: The invention relates to a nitride light emitting device including first and second conductivity type nitride layers and a plurality of active regions emitting light of different wavelength. The active regions are sequentially formed between the first and the second conductivity type nitride layers. The active regions include at least one first active region having a plurality of first quantum barrier layers and quantum well layers, and a second active region emitting light of a wavelength larger than that of the first active region. The second active region has a plurality of second quantum barrier layers and at least one discontinuous quantum well structure formed between the plurality of second quantum barrier layers. The discontinuous quantum well structure comprises a plurality of quantum dots or crystallites.

    摘要翻译: 本发明涉及包括第一和第二导电型氮化物层和发射不同波长的光的多个有源区的氮化物发光器件。 有源区依次形成在第一和第二导电型氮化物层之间。 有源区包括具有多个第一量子势垒层和量子阱层的至少一个第一有源区和发射波长大于第一有源区的波长的光的第二有源区。 第二有源区具有多个第二量子势垒层和形成在多个第二量子势垒层之间的至少一个不连续量子阱结构。 不连续量子阱结构包括多个量子点或微晶。

    Method of producing nitride layer and method of fabricating vertical structure nitride semiconductor light emitting device
    45.
    发明申请
    Method of producing nitride layer and method of fabricating vertical structure nitride semiconductor light emitting device 有权
    氮化物层的制造方法及垂直结构氮化物半导体发光元件的制造方法

    公开(公告)号:US20060292718A1

    公开(公告)日:2006-12-28

    申请号:US11410052

    申请日:2006-04-25

    IPC分类号: H01L21/00

    摘要: The present invention provides methods for manufacturing a nitride layer and a vertical nitride semiconductor light emitting device. In manufacturing the nitride layer according to the invention, a sapphire substrate is prepared. A buffer layer made of a material having a melting point and a thermal conductivity higher than those of nitride is formed on the sapphire substrate. Also, the nitride layer is formed on the buffer layer. Then a laser beam is irradiated to an underside of the sapphire substrate to remove the nitride layer. According to the invention, the nitride layer is made of a material having a composition expressed by AlxInyGa(1-x-y)N, where 0≦x≦1, 0≦y≦1, and 0≦x+y≦1. In addition, the buffer layer is made of SiC.

    摘要翻译: 本发明提供了制造氮化物层和垂直氮化物半导体发光器件的方法。 在制造根据本发明的氮化物层时,制备蓝宝石衬底。 在蓝宝石衬底上形成由具有高于氮化物的熔点和导热率的材料制成的缓冲层。 此外,在缓冲层上形成氮化物层。 然后将激光束照射到蓝宝石衬底的下侧以除去氮化物层。 根据本发明,氮化物层由具有由Al x In 1 Ga(1-xy)N表示的组成的材料制成,其中0 <= x <= 1 ,0 <= y <= 1,0 <= x + y <= 1。 此外,缓冲层由SiC制成。

    Method for producing Group III nitride compound semiconductor
    47.
    发明授权
    Method for producing Group III nitride compound semiconductor 有权
    生产III族氮化物化合物半导体的方法

    公开(公告)号:US07112243B2

    公开(公告)日:2006-09-26

    申请号:US10200586

    申请日:2002-07-23

    IPC分类号: C30B29/38 H01L21/36

    摘要: The present invention provides a method for producing a Group III nitride compound semiconductor, which method permits only minimal reaction of the semiconductor with a hetero-substrate during epitaxial growth and induces no cracks in the Group III nitride compound semiconductor even when the semiconductor is cooled to room temperature. The method includes a buffer layer formation step for forming a gas-etchable buffer layer on the hetero-substrate, and a semiconductor formation step for epitaxially growing the Group III nitride compound semiconductor on the buffer layer through a vapor phase growth method, wherein at least a portion of the buffer layer is gas-etched during or after the semiconductor formation step.

    摘要翻译: 本发明提供了一种制造III族氮化物化合物半导体的方法,该方法在外延生长期间仅允许半导体与异质衬底的反应最小,并且即使当半导体被冷却到第三族氮化物半导体时也不引起裂纹 室内温度。 该方法包括用于在异质衬底上形成气体可蚀刻缓冲层的缓冲层形成步骤,以及用于通过气相生长法在缓冲层上外延生长III族氮化物半导体的半导体形成步骤,其中至少 在半导体形成步骤期间或之后,缓冲层的一部分被气蚀刻。

    Light-emitting semiconductor device using Group III nitride compound
    48.
    发明授权
    Light-emitting semiconductor device using Group III nitride compound 失效
    使用III族氮化物的发光半导体器件

    公开(公告)号:US07045829B2

    公开(公告)日:2006-05-16

    申请号:US08681412

    申请日:1996-07-23

    IPC分类号: H01L33/00

    摘要: A Group III nitride compound semiconductor includes a multiple layer structure having an emission layer between an n-type cladding layer and a p-type cladding layer. The n-type cladding layer may be below the emission layer, having been formed on another n-type layer which was formed over a buffer Layer and a sapphire substrate. The emission layer has a thickness which is wider than the diffusion length of holes within the emission layer. The n-type cladding layer is doped with a donor impurity and has a lattice constant Substantially equal to a lattice constant of the emission layer. The p-type cladding layer is doped with an acceptor impurity and has a forbidden band sufficiently wider than the forbidden band of the emission layer in ordor to confine electrons injected into the emission layer.

    摘要翻译: III族氮化物化合物半导体包括在n型包覆层和p型包覆层之间具有发射层的多层结构。 n型覆层可以在形成在缓冲层和蓝宝石衬底上的另一n型层上形成的发光层之下。 发光层的厚度比发光层内的孔的扩散长度宽。 n型包覆层掺杂有施主杂质,其晶格常数基本上等于发光层的晶格常数。 p型覆层被掺杂有受主杂质,并且具有比限制发射层中的发射层的禁带宽度更宽的禁带,以限制注入到发射层中的电子。

    Light-emitting aluminum gallium indium nitride compound semiconductor device having an improved luminous intensity
    49.
    发明授权
    Light-emitting aluminum gallium indium nitride compound semiconductor device having an improved luminous intensity 失效
    具有改善的发光强度的发光铝镓铟氮化物半导体器件

    公开(公告)号:US07001790B2

    公开(公告)日:2006-02-21

    申请号:US09783035

    申请日:2001-02-15

    IPC分类号: H01L21/00

    摘要: A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 Å thickness. The GaN n+-layer (3) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 μm thickness. The p-layer 6 has about a 1.0 μm thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8). The composition ratio of Al, Ga, and In in each of the layers (4, 5, 6) is selected to meet the lattice constant of GaN in the n+-layer (3). The LED (10) is designed to improve luminous intensity and to obtain purer blue color.

    摘要翻译: 发光半导体器件(10)连续地包括蓝宝石衬底(1),AlN缓冲层(2),高载体的硅(Si)掺杂GaN n + +层(3) (n型)浓度,Si掺杂(Al x3 Ga 1-x 3)y 3在1-y 3中, 具有高载流子(n型)浓度的氮(Zn)和Si掺杂(Al 2 x 2 Ga 2) 1-x2 Y2在1-y2 N发射层(5)中,以及Mg掺杂(Al x1 Ga) 在1-y1 N p层(6)中。 AlN层(2)的厚度为500埃。 GaN n + +(3)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 n + +层(4)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 发射层(5)的厚度约为0.5μm。 p层6具有约1.0μm厚度和2×10 17 / cm 3孔浓度。 镍电极(7,8)分别连接到p层(6)和n + +层(4)。 一个凹槽(9)使电极(7,8)电绝缘。 选择各层(4,5,6)中的Al,Ga和In的组成比以满足n +层(3)中的GaN的晶格常数。 LED(10)被设计为提高发光强度并获得更纯的蓝色。

    Semiconductor crystal producing method
    50.
    发明授权
    Semiconductor crystal producing method 有权
    半导体晶体制造方法

    公开(公告)号:US06946370B2

    公开(公告)日:2005-09-20

    申请号:US10488083

    申请日:2002-08-05

    摘要: In a separation layer removing process α, temperature in a reaction chamber (heat treatment temperature TX) is raised to about 1000° C. and a separation layer A is evaporated through thermal decomposition, to thereby separate about 10 μm in thickness of protection layer B from a base substrate side (a sapphire substrate 101 comprising a buffer layer 102). Because decomposition temperature of the separation layer A is higher than growth temperature of the protection layer B (about 650° C.) and lower than growth temperature of the semiconductor crystal C (about 1000° C.), the separation layer A vanishes (evaporates) by thermal decomposition, which generates this separation process. Accordingly, a semiconductor crystal having a cross sectional structure shown in FIG. 2B is obtained. By employing the protection layer B which is independent from the base substrate side as another crystal growth substrate, dislocations and cracks may not be generated by stress owing to difference of lattice constants or difference of thermal expansion coefficients, and a semiconductor crystal layer C (GaN single crystal) of high quality can be obtained.

    摘要翻译: 在分离层去除方法α中,将反应室中的温度(热处理温度T×X)升高至约1000℃,通过热分解蒸发分离层A,从而分离约 保护层B的厚度为10μm,从基底侧(包括缓冲层102的蓝宝石衬底101)。 由于分离层A的分解温度高于保护层B的生长温度(约650℃)且低于半导体晶体C的生长温度(约1000℃),所以分离层A消失(蒸发 )通过热分解,产生这种分离过程。 因此,具有图1所示的横截面结构的半导体晶体。 2 B。 通过采用独立于基底侧的保护层B作为另一种晶体生长衬底,由于晶格常数或热膨胀系数的差异而导致的应力不会产生位错和裂纹,并且半导体晶体层C(GaN 单晶)。