Abstract:
A new air interface that is interference cancellation friendly is proposed. In one novel aspect, a novel code rate assignment with rate splitting is proposed. In one embodiment, a base station decomposes a codeword {x1} into two codewords {x1a} and {x1b}. The two codewords are applied with different code rates and/or modulation orders. More specifically, the code rate or modulation order of codeword {x1a} is set appropriately so that a victim UE can decode and cancel {1a} under the channel quality of the victim UE. Typically, the channel quality of a victim UE is poorer than the channel quality of the intended UE. As a result, the MCS for {1a} can be lower than the MCS for {1b} such that the victim UE is able to apply CWIC to decode and cancel {1a}.
Abstract:
Methods of enabling multiuser superposition transmission (MUST) in LTE systems are proposed. MUST operation allows simultaneous transmission for multiple co-channel users on the same time-frequency resources. A higher-layer signaling is used for configuring a UE to enable MUST. When a UE is configured by higher layer to enable MUST, the UE will monitor physical-layer control signaling carrying scheduling information and MUST-related information. Depending on whether MUST exists in each subframe, the UE derives the power allocation between the UE and its co-channel UE on allocated resource blocks. The UE also derives the power allocation based on whether it is configured for CRS-based transmission mode or DMRS-based transmission mode.
Abstract:
A method of performing downlink multiuser superposition transmission (MUST) with enhanced channel state information (CSI) feedback is proposed. When a user equipment (UE) reports CQI/SINR feedback for RI=RANK-2, the UE also reports a single beam CQI/SINR feedback for RI=RANK1. As a result, the scheduling base station can calculate the actual SINRs based on different MUST scenarios and thereby determining appropriate modulation and coding scheme (MCS) for the UE. Furthermore, if the granularity of the CQI table cannot reflect the high values of the single beam SINR, then a predefined scaling factor (0
Abstract:
A method of network-based positioning using sounding reference signal (SRS) is proposed. An eNodeB configures a number of parameters of a periodic SRS transmission for a user equipment (UE). The eNodeB then transmits SRS configuration data for SRS measurements performed by a location measurement unit (LMU). The SRS configuration data includes cell-specific SRS bandwidth configuration and UE-specific SRS bandwidth configuration. The SRS configuration data may further include a number of antenna ports for SRS transmission, SRS frequency hopping bandwidth configuration, information on whether SRS sequence-group hopping is enabled, and ΔSS when SRS sequence hopping is enabled. Upon receiving the SRS configuration data, the LMU is able to perform timing measurements over the received SRS signals from the UE. In one embodiment, the LMU detects SRS dropping to avoid performance degradation of the network-based positioning.
Abstract:
A method of separate accumulation in closed-loop power control in adaptive TDD systems is proposed. A UE obtains configuration information from a base station in an adaptive TDD system. Each radio frame comprises a plurality of subframes, which are configured into two or more subframe sets. The UE receives a transmit power control (TPC) command in a downlink subframe. The UE determines a power control adjustment state for an uplink subframe i based on the TPC command. The power control adjustment state of subframe i is accumulated from a power control adjustment state of a previous uplink subframe j, where subframe i and subframe j belong to the same subframe set. In one embodiment, subframe j is the closest previous uplink subframe with respect to uplink subframe i.
Abstract:
A communications apparatus is provided. A controller module generates a suggested sub-frame pattern describing suggested arrangement of one or more almost blank sub-frame(s) in one or more frame(s) and schedules control signal and/or data transmissions according to the suggested sub-frame pattern. A transceiver module transmits at least a first signal carrying information regarding the suggested sub-frame pattern to a peer communications apparatus. The peer communications apparatus does not schedule data transmissions in the almost blank sub-frame(s).
Abstract:
A method of UE power profile adaptation to traffic and UE power consumption characteristics based on power profile is proposed. In one preferred embodiment, hybrid of bandwidth part (BWP) and power profile is proposed. UE is configured with multiple BWPs and each BWP includes a set of power profiles. Two types of adaptation triggering can be used, a first type of trigger is based on power saving signals sent from the network, and the second type of trigger is based on timers. When the traffic characteristic for UE changes, the network can send a power saving signal to UE to trigger power profile adaptation, e.g., BWP+power profile switching. When traffic has been digested and becomes sporadic, then power profile adaptation can be triggered based on timers, e.g., a timer for BWP adaptation and another timer for power profile adaptation.
Abstract:
A UE determines N1 component carriers on each of which the UE is configured to detect a respective one PDCCH in a slot. The UE determines N2 component carriers on each of which the UE is configured to detect respective at least two PDCCHs in the slot. The UE determines a total Q blind detections of PDCCH that the UE is capable of performing. The UE determines a first predetermined scaling factor X. The UE allocates M1 blind detections of the Q blind detections to be available on each of the N1 component carriers and M2 blind detections of the Q blind detections to be available on each of the N2 component carriers such that (N1*M1+N2*M2) is a largest integer no greater than Q. M2 equals to X*M1. The UE performs blind detections in accordance with the allocations.
Abstract:
A method of providing over-the-air assistance information for interference cancellation or suppression to the receiver is proposed. Under a first solution, a two-stage DCI (downlink control information) or SCI (sidelink control information) scheduling method is proposed. The set of first-stage DCI or SCI provides a part of scheduling information which is beneficial for interference cancellation or suppression and is broadcasted by a transmitter or scheduler to all receivers. The set of second-stage DCI or SCI includes the remaining scheduling information and is unicasted by a transmitter or scheduler to each receiver. Under a second solution, assistance information DCI for interference cancellation or suppression is broadcasted by a transmitter or scheduler to all receivers.
Abstract:
A method of beam failure recovery request (BFRQ) transmission is proposed. UE can search for UE-specific control channel in a search space that is signaled specifically for monitoring network response of the BFRQ. Furthermore, configurations indicated specifically for BFRQ can be carried by dedicated signaling such as high-layer radio resource control (RRC) signaling. After successfully rebuilding connection, UE assumes the demodulation reference signal (DMRS) ports of UE-specific control channel to be spatially quasi-co-located (QCL-ed) with the reference signals identified during the beam failure recovery procedure.