Abstract:
Some embodiments include integrated memory. The integrated memory includes a first series of first conductive structures and a second series of conductive structures. The first conductive structures extend along a first direction. The second conductive structures extend along a second direction which crosses the first direction. Pillars of semiconductor material extend upwardly from the first conductive structures. Each of the pillars includes a lower source/drain region, an upper source/drain region, and a channel region between the lower and upper source/drain regions. The lower source/drain regions are coupled with the first conductive structures. Insulative material is adjacent sidewall surfaces of the pillars. The insulative material includes ZrOx, where x is a number greater than 0. The second conductive structures include gating regions which are spaced from the channel regions by at least the insulative material. Storage elements are coupled with the upper source/drain regions.
Abstract:
Some embodiments include integrated memory. The integrated memory includes a first series of first conductive structures and a second series of conductive structures. The first conductive structures extend along a first direction. The second conductive structures extend along a second direction which crosses the first direction. Pillars of semiconductor material extend upwardly from the first conductive structures. Each of the pillars includes a lower source/drain region, an upper source/drain region, and a channel region between the lower and upper source/drain regions. The lower source/drain regions are coupled with the first conductive structures. Insulative material is adjacent sidewall surfaces of the pillars. The insulative material includes ZrOx, where x is a number greater than 0. The second conductive structures include gating regions which are spaced from the channel regions by at least the insulative material. Storage elements are coupled with the upper source/drain regions.
Abstract:
Systems, methods and apparatus are provided for an array of vertically stacked memory cells having horizontally oriented access devices having a first source/drain region and a second source drain region separated by a channel region, and gates opposing the channel region, vertically oriented access lines coupled to the gates and separated from a channel region by a gate dielectric. The memory cells have horizontally oriented storage nodes coupled to the second source/drain region and horizontally oriented digit lines coupled to the first source/drain regions. In one example, an insulator material is formed on a surface of the first source/drain region and a conductor material formed on the insulator material to form a metal insulator semiconductor (MIS) interface between the horizontally oriented digit lines and the first source/drain regions of the horizontally oriented access devices.
Abstract:
Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a memory cell, first, second, and third data lines, and first and second access lines. Each of the first, second, and third data lines includes a length extending in a first direction. Each of the first and second access lines includes a length extending in a second direction. The memory cell includes a first transistor including a charge storage structure, and a first channel region electrically separated from the charge storage structure, and a second transistor including a second channel region electrically coupled to the charge storage structure. The first data line is electrically coupled to the first channel region. The second data line is electrically coupled to the first channel region. The third data line is electrically coupled to the second channel region, the second channel region being between the charge storage structure and the third data line. The first access line is located on a first level of the apparatus and separated from the first channel by a first dielectric. The second access line is located on a second level of the apparatus and separated from the second channel by a second dielectric. The charge storage structure is located on a level of the apparatus between the first and second levels.
Abstract:
Memory devices and electronic systems include an array of vertical memory cells positioned along respective vertical channels to define vertical memory strings. Each of the vertical channels includes a channel material exhibiting an electron mobility of at least about 30 cm2/(V·s) and a room temperature band gap of at least about 1.40 eV (e.g., zinc oxide, silicon carbide, indium phosphide, indium gallium zinc oxide, gallium arsenide, or molybdenum disulfide) and a bottom plug material exhibiting a room temperature band gap of less than about 1.10 eV (e.g., silicon germanium, germanium, or indium gallium arsenide). Methods of fabricating a memory device include forming such a bottom plug material within vertical channels and forming such a channel material electrically coupled to the bottom plug material.
Abstract:
Some embodiments include an assembly having active material structures arranged in an array having rows and columns. Each of the active material structures has a first side which includes a bit contact region, and has a second side which includes a cell contact region. Each of the bit contact regions is coupled with a first redistribution pad. Each of the cell contact regions is coupled with a second redistribution pad. The first redistribution pads are coupled with bitlines, and the second redistribution pads are coupled with programmable devices. Some embodiments include methods of forming memory arrays.
Abstract:
Some embodiments include an assembly having active material structures arranged in an array having rows and columns. Each of the active material structures has a first side which includes a bit contact region, and has a second side which includes a cell contact region. Each of the bit contact regions is coupled with a first redistribution pad. Each of the cell contact regions is coupled with a second redistribution pad. The first redistribution pads are coupled with bitlines, and the second redistribution pads are coupled with programmable devices. Some embodiments include methods of forming memory arrays.
Abstract:
Some embodiments include an assembly having active material structures arranged in an array having rows and columns. Each of the active material structures has a first side which includes a bit contact region, and has a second side which includes a cell contact region. Each of the bit contact regions is coupled with a first redistribution pad. Each of the cell contact regions is coupled with a second redistribution pad. The first redistribution pads are coupled with bitlines, and the second redistribution pads are coupled with programmable devices. Some embodiments include methods of forming memory arrays.
Abstract:
A method for memory device fabrication includes forming a plurality of continuous fins on a substrate. An insulator material is formed around the fins. The continuous fins are etched into segmented fins to form exposed areas between the segmented fins. An insulator material is formed in the exposed areas wherein the insulator material in the exposed areas is formed higher than the insulator material around the fins. A metal is formed over the fins and the insulator material. The metal formed over the exposed areas is formed to a shallower depth than over the fins.
Abstract:
A vertical access device comprises a semiconductive base comprising a first source/drain region, a semiconductive pillar extending vertically from the semiconductive base, and a gate electrode adjacent a sidewall of the semiconductive pillar. The semiconductive pillar comprises a channel region overlying the first source/drain region, and a second source/drain region overlying the channel region. An opposing sidewall of the semiconductive pillar is not adjacent the gate electrode or another gate electrode. Semiconductive device structures, methods of forming a vertical access device, and methods of forming a semiconductive structure are also described.