摘要:
An object is to suppress reading error even in the case where writing and erasing are repeatedly performed. Further, another object is to reduce writing voltage and erasing voltage while increase in the area of a memory transistor is suppressed. A floating gate and a control gate are provided with an insulating film interposed therebetween over a first semiconductor layer for writing operation and erasing operation and a second semiconductor layer for reading operation which are provided over a substrate; injection and release of electrons to and from the floating gate are performed using the first semiconductor layer; and reading is performed using the second semiconductor layer.
摘要:
A novel photoelectric conversion device in which energy of light can be effectively utilized and performance can be improved is provided. A photoelectric conversion device includes a photoelectric conversion element and an energy conversion layer provided on a light-receiving side of a photoelectric conversion layer included in the photoelectric conversion element. The energy conversion layer includes a plurality of first layers and a plurality of second layers. The first layer and the second layer are alternately stacked. The thickness of the first layer is greater than or equal to 0.5 nm and less than or equal to 10 nm, and the thickness of the second layer is greater than or equal to 0.5 nm and less than or equal to 10 nm. The second layer can be formed using a material having a larger energy band gap than that of a material used for the first layer.
摘要:
A photoelectric conversion device includes a first cell including a photoelectric conversion layer, a second cell over the first cell including a photoelectric conversion layer formed of a material having a wider band gap than that of the first cell, first and second electrodes under a surface of the first cell which is opposite to the second cell, and a third electrode over a surface of the second cell which is opposite to the first cell. The first and second cells each include a p-n or p-i-n junction, the first and second cells are in contact with each other and a p-n junction is formed in a contact portion therebetween, the first cell is electrically connected to the first and second electrodes to form a back contact structure, and the second cell is electrically connected to the third electrode.
摘要:
A semiconductor device which is formed in a self-aligned manner without causing a problem of misalignment in forming a control gate electrode and in which a leak between the control gate electrode and a floating gate electrode is not generated, and a manufacturing method of the semiconductor device are provided. A semiconductor device includes a semiconductor film, a first gate insulating film over the semiconductor film, a floating gate electrode over the first gate insulating-film, a second gate insulating film which covers the floating gate electrode, and a control gate electrode over the second gate insulating film. The control gate electrode is formed so as to cover the floating gate electrode with the second gate insulating film interposed therebetween, the control gate electrode is provided with a sidewall, and the sidewall is formed on a stepped portion of the control gate-electrode, generated due to the floating gate electrode.
摘要:
As for a memory element implemented in a semiconductor device typified by an RFID, it is an object of the present invention to reduce manufacturing steps and to provide a memory element and a memory circuit having the element with reduced cost. It is a feature of the present invention that a memory element sandwiched between electrodes has an organic compound, and an electrode connected to a semiconductor element controlling the memory element functions as an electrode of the memory element. In addition, an extremely thin semiconductor film formed on an insulated surface is used for the memory element; therefore cost can be reduced.
摘要:
To provide a photoelectric conversion device which has little light loss caused by light absorption in a window layer, the photoelectric conversion device includes a first electrode, a first semiconductor layer formed over the first electrode, a second semiconductor layer formed over the first semiconductor layer, a third semiconductor layer formed over the second semiconductor layer, and a second electrode formed over the third semiconductor layer; and the first semiconductor layer is a light-transmitting semiconductor layer containing an organic compound and an inorganic compound, and the second semiconductor layer and the third semiconductor layer are each a semiconductor layer containing an organic compound.
摘要:
A semiconductor device which is formed in a self-aligned manner without causing a problem of misalignment in forming a control gate electrode and in which a leak between the control gate electrode and a floating gate electrode is not generated, and a manufacturing method of the semiconductor device are provided. A semiconductor device includes a semiconductor film, a first gate insulating film over the semiconductor film, a floating gate electrode over the first gate insulating film, a second gate insulating film which covers the floating gate electrode, and a control gate electrode over the second gate insulating film. The control gate electrode is formed so as to cover the floating gate electrode with the second gate insulating film interposed therebetween, the control gate electrode is provided with a sidewall, and the sidewall is formed on a stepped portion of the control gate electrode, generated due to the floating gate electrode.
摘要:
A nonvolatile memory element which is provided with a floating gate electrode and a high withstand voltage transistor which is provided with a thick gate insulating film are formed over one substrate without increase in a driving voltage of the nonvolatile memory element. A stacked film of a first insulating film and a second insulating film is formed between an island-like semiconductor region and a floating gate electrode of the nonvolatile memory element and between an island-like semiconductor region and a gate electrode of the transistor. The first insulating film overlapping with the floating gate electrode is removed, and the insulating film between the island-like semiconductor region and the floating gate electrode is formed thinner than the gate insulating film of the transistor. The transistor includes a conductive film which is formed in the same layer as the floating gate electrode and a conductive film which is formed in the same layer as a control gate electrode, and these two conductive films are electrically connected to each other and function as the gate electrodes of the transistor.
摘要:
To reduce the writing and erasing voltages of a memory transistor without increasing the area of a memory cell, and to reduce the area of a memory cell without increasing the writing and erasing voltages. The memory cell includes a memory transistor having a first island-shaped semiconductor region, a floating gate and a control gate. In addition, a second island-shaped semiconductor region is formed under the floating gate with an insulating film interposed therebetween. Since the second island-shaped semiconductor region is electrically connected to the control gate, a capacitance is formed between the second island-shaped semiconductor region and the floating gate. This capacitance contributes to an increase in the coupling ratio of the memory transistor, which makes it possible to increase the coupling ratio without increasing the area of the memory cell. Furthermore, the area of the memory cell can be reduced without reducing the coupling ratio.
摘要:
A reflection member is provided for a space between photoelectric conversion cells or a periphery of the photoelectric conversion cells, which is the place not provided with the photoelectric conversion cell, so that a peak portion of the reflection member is higher than a surface of the photoelectric conversion cells. Accordingly; light having entered the space between the photoelectric conversion cells or the periphery of the photoelectric conversion cells, which does not contribute to power generation under normal circumstances, can be guided to the photoelectric conversion cell through reflection by the reflection member. Note that since the peak portion of the reflection member is higher than the surface of the photoelectric conversion cells, sunlight can be guided to the photoelectric conversion cell through one-time reflection, whereby the object can be achieved.