Abstract:
A detection system identifies a person by rapidly analyzing an image frame from a video camera for the presence of a face by reducing the image in resolution and normalizing the image to compensate for lighting changes and compares the normalized image with a background image to produce a binary interest mask. The most likely position of a face is then determined by identifying a top, bottom and sides of a possible head region to define a bounding box, normalizing the pixel data within the bounding box to further compensate for lighting variations, and resizing the box to match identification templates stored in memory. The best match from the identification templates is provided with a score indicative of the degree of the match. If the score does not exceed a first score threshold, then no face is assumed present. If the score exceeds a first and second score threshold, then a face is assumed present. If the first score threshold is exceeded but the second is not, a further eye location procedure is performed on the data to determine if a face is present.
Abstract:
An apparatus for examining tissue in vivo by means of the optical properties of the tissue generates a measuring chirp signal which is introduced into a tissue-containing subject as a coherent optical chirp signal. The parts of the measuring chirp signal emerging from the subject are superimposed with a reference chirp signal to form a superposition signal that is supplied to a filter that only allows those parts of the superposition signal to pass that represent those parts of the measuring chirp signal emerging from the subject which have traversed a defined, optical path length within the subject.
Abstract:
A method of manufacturing microstructures, such as MEMS or NEMS devices, including forming a protective layer on a surface of a moveable component of the microstructure. For example, a silicide layer may be formed on one or more surfaces of a poly-silicon mass that is moveable with respect to a substrate of the microstructure. The process may be self-aligning.
Abstract:
A method includes forming a recess in a first surface of a substrate, the recess having a width, depth, and height selected to correspond to a width, depth, and height of a fluid chamber, forming a sacrificial material in the recess, forming a first heater element, forming a metal layer overlying the first heater element, and forming a nozzle opening in the metal layer to expose the sacrificial material. The method also includes forming a path from a second surface of the substrate to expose the sacrificial material and removing the sacrificial material from the recess to expose the chamber with the selected width, depth, and height, the chamber in fluid communication with the path, the nozzle opening, and a surrounding environment.
Abstract:
A device includes an integrated circuit and a deposited tin in electrical contact with a portion of the integrated circuit. The deposited tin is formed by electrodeposition from a bath. The deposited tin includes a residue characteristic of the bath. The bath includes a bath-soluble tin compound, a strong acid, and a sulfopropylated anionic surfactant. In another aspect, a composition includes between approximately 20 and 40 grams per liter of one of stannous methane sulfonate, stannous sulfate, and a mixture thereof, between approximately 100 and 200 grams per liter of one of methanesulfonic acid, sulfuric acid, and a mixture thereof, and between approximately 1 and 2 grams per liter of one or more polyethyleneglycol alkyl-3-sulfopropyl diethers. In another aspect, a method includes electroplating tin with a current density of greater than approximately 30 mA/cm2 and a plating efficiency of greater than approximately 95%.
Abstract:
A system and method for synchronously processing ear shells for hearing aids comprising: loading data associated with a first and second ear shell; determining whether to perform a rigid or non-rigid registration of the data associated with the first and second ear shells, wherein the rigid registration is performed when shapes of the first and second ear shells are within a predetermined threshold, and the non-rigid registration is performed when the shapes of the first and second ear shells are not within the predetermined threshold; registering the data associated with the first and second ear shells; processing the first and second ear shells, wherein the processing is synchronously performed; and outputting the processed first and second ear shells to a display device.
Abstract:
A thin film power transistor includes a plurality of first doped regions over a substrate and a second doped region forming a body. At least a portion of the body is disposed between the plurality of first doped regions. The thin film power transistor also includes a gate over the substrate. The thin film power transistor further includes a dielectric layer, at least a portion of which is disposed between (i) the gate and (ii) the first and second doped regions. In addition, the thin film power transistor includes a plurality of contacts contacting the plurality of first doped regions, where the plurality of first doped regions forms a source and a drain of the thin film power transistor. The first doped regions could represent n-type regions (such as N− regions), and the second doped region could represent a p-type region (such as a P− region). The first doped regions could also represent p-type regions, and the second doped region could represent an n-type region.
Abstract:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a barrier layer on a substrate, wherein the barrier layer comprises molybdenum; and forming a lead free interconnect structure on the barrier layer.
Abstract:
A system and method for ground glass nodule (GGN) segmentation is provided. The method comprises: selecting a point in a medical image, wherein the point is located in a GGN; defining a volume of interest (VOI) around the point, wherein the VOI comprises the GGN; removing a chest wall from the VOI; obtaining an initial state for a Markov random field; and segmenting the VOI, wherein the VOI is segmented using the Markov random field.
Abstract:
A system for detecting one or more faulty sensors in a multi-sensor monitor includes a partitioning module for partitioning sensor values generated by the multi-sensor monitor into two distinct sets, a training set and a validation set. The system also includes a training module for training a model using the sensor values belonging to the training set and applying the model to each sensor value belonging to the validation set so as to determine a range of acceptable sensor values. The system further includes an estimating module for obtaining an estimated sensor value for each sensor using the model, and a fault-determining module for testing at least one sensor combination if a sensor value is not within its range of acceptable sensor values. A sensor combination includes at least one sensor whose estimated sensor value is not within the range of acceptable values.