摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a barrier layer on a substrate, wherein the barrier layer comprises molybdenum; and forming a lead free interconnect structure on the barrier layer.
摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a barrier layer on a substrate, wherein the barrier layer comprises molybdenum; and forming a lead free interconnect structure on the barrier layer.
摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a barrier layer on a substrate, wherein the barrier layer comprises molybdenum; and forming a lead free interconnect structure on the barrier layer.
摘要:
Metal alloy barrier layers formed of a group VII metal alloyed with boron (B) and/or phosphorous (P) and an at least one element from glyoxylic acid, such as carbon (C), hydrogen (H), or carbon and hydrogen (CH) formed by electoless plating are described. These barrier layers may be used as a barrier layer over copper bumps that are soldered to a tin-based solder in a die package. Such barrier layers may also be used as barrier layer liners within trenches in which copper interconnects or vias are formed and as capping layers over copper interconnects or vias to prevent the electromigration of copper.
摘要:
A system and method for storing a solution containing a subset of a group consisting of a metal ion, a complexing agent, an ammonium salt, and a strong base and then nearer to a time of use in an electroless deposition process, using the solution to form an electroless deposition solution containing the entire group. In one embodiment of the invention, the metal ion includes a cobalt ion, the complexing agent includes citric acid, the ammonium salt includes ammonium chloride, and the strong base includes tetramethylammonium hydroxide.
摘要:
The invention provides bumps between a die and a substrate with a height greater than or equal to a height of a waveguide between the die and the substrate. The bumps may be formed on a die prior to that die being singulated from a wafer.
摘要:
Some embodiments for a method to fill interlayer vias with a suitable metal in a ferroelectric polymer memory die to reduce the step height and improve the thermal and electrical properties of the via. The method uses an electroless plating method to fill the vias, which is compatible with the ferroelectric polymer memory die processing temperature limits. The resulting process produces via fill metal plugs in the ferroelectric memory die, which allows for the deposition of a thin metal layer over the vias, while at the same time improving the electrical and thermal properties of the vias. Other embodiments are described and claimed herein.
摘要:
The invention provides bumps between a die and a substrate with a height greater than or equal to a height of a waveguide between the die and the substrate. The bumps may be formed on a die prior to that die being singulated from a wafer.
摘要:
According to one aspect of the invention, a method for forming contact formations is provided. A substrate may be placed in an electrolytic solution. The substrate may have an exposed conductive portion and the electrolytic solution may include a plurality of metallic ions and an accelerator. The accelerator may include at least one of bis-(sodium sulfopropyl)-disulfide and 3-mercapto-1-propanesulfonic acid-sodium salt. A voltage may be applied across the electrolytic solution and the conductive portion of the substrate to cause the metallic ions to be changed into metallic particles and deposited on the conductive portion. The electrolytic solution may also include a protonated organic additive. The electrolytic solution may also include an acid and a surfactant. The acid may include at least one of sulfuric acid, methane sulfonic acid, benzene sulfonic acid, and picryl sulfonic acid. The surfactant may include at least one of polyethylene glycol and polypropylene glycol.
摘要:
The invention provides bumps between a die and a substrate with a height greater than or equal to a height of a waveguide between the die and the substrate. The bumps may be formed on a die prior to that die being singulated from a wafer.