摘要:
A method of degassing a thin layer and a method of manufacturing a silicon thin film includes applying microwaves to a silicon thin film deposited on a substrate to induce a resonance of impurities of H2, Ar, He, Xe, O2, and the like present in the silicon thin film so as to remove the impurities from the silicon thin film. A wavelength of the microwaves is equal to a natural frequency of an element of an object to be removed. According to a resonance of impurities induced by microwaves, the impurities can be very effectively removed from the silicon thin film so as to obtain a high quality silicon thin film. In particular, the microwaves are very suitable to be used in the manufacture of silicon thin films at low temperature.
摘要:
A transistor includes; at least two polycrystalline silicon layers disposed substantially parallel to each other, each polycrystalline silicon layer including a channel region and at least two high conductivity regions disposed at opposing sides of the channel region; a gate which corresponds to the channel region of the two polycrystalline silicon layers and which crosses the two polycrystalline silicon layers, and a gate insulating layer interposed between the gate and the two polycrystalline silicon layers, wherein low conductivity regions are disposed adjacent to one edge of the gate and are formed between the channel region and one high conductivity region of each polycrystalline silicon layer.
摘要:
Provided is a method of manufacturing a driving-device for a unit pixel of an organic light emitting display having an improved manufacturing process in which the driving device can be manufactured with a smaller number of processes and in simpler processes. The method includes: forming an amorphous silicon layer including a first amorphous region and a second amorphous region disposed on the same plane of a substrate; forming an SAM (self-assembled monolayer) having a hydrophobic property on the first amorphous region; coating an aqueous solution in which nickel particles are dispersed, on the second amorphous region and the SAM, wherein a larger amount of nickel particles than on the SAM are dispersed on the second amorphous region using a hydrophilicity difference between the second amorphous region and the SAM; vaporizing the SAM through an annealing process and simultaneously performing metal induced crystallization in which the nanoparticles are used as a medium, to crystallize the first and second amorphous regions and to form first and second crystallization regions; patterning the first and second crystallization regions to form first and second channel regions; and forming first and second electrodes on the first and second channel regions.
摘要:
A method of fabricating a poly-Si thin film and a method of fabricating a poly-Si TFT using the same are provided. The poly-Si thin film is formed at a low temperature using ICP-CVD. After the ICP-CVD, ELA is performed while increasing energy by predetermined steps. A poly-Si active layer and a Si02 gate insulating layer are deposited at a temperature of about 150° C. using ICP-CVD. The poly-Si has a large grain size of about 3000 A or more. An interface trap density of the Si02 can be as high as lo∥/cm2. A transistor having good electrical characteristics can be fabricated at a low temperature and thus can be formed on a heat tolerant plastic substrate.
摘要:
Provided are a method of manufacturing a laterally crystallized semiconductor layer and a method of manufacturing a thin film transistor (TFT) using the method. The method of manufacturing the laterally crystallized semiconductor layer comprises: forming a semiconductor layer on a substrate; irradiating laser beams on the semiconductor layer; splitting the laser beams using a prism sheet comprising an array of a plurality of prisms, advancing the laser beams toward the semiconductor layer to alternately form first and second areas in the semiconductor layer so as to fully melt the first areas, wherein the laser beams are irradiated onto the first areas, and the laser beams are not irradiated onto the second areas; and inducing the first areas to be laterally crystallized using the second areas as seeds.
摘要:
A method of fabricating a poly-Si thin film and a method of fabricating a poly-Si TFT using the same are provided. The poly-Si thin film is formed at a low temperature using ICP-CVD. After the ICP-CVD, ELA is performed while increasing energy by predetermined steps. A poly-Si active layer and a SiO2 gate insulating layer are deposited at a temperature of about 150° C. using ICP-CVD. The poly-Si has a large grain size of about 3000 Å or more. An interface trap density of the SiO2 can be as high as 1011/cm2. A transistor having good electrical characteristics can be fabricated at a low temperature and thus can be formed on a heat tolerant plastic substrate.
摘要:
Provided are an oxide semiconductor and an oxide thin film transistor including the oxide semiconductor. The oxide semiconductor may be formed of an indium (In)-zinc (Zn) oxide in which hafnium (Hf) is contained, wherein In, Zn, and Hf are contained in predetermined or given composition ratios.
摘要:
Provided are an oxide semiconductor and an oxide thin film transistor including the oxide semiconductor. The oxide semiconductor may be formed of an indium (In)-zinc (Zn) oxide in which hafnium (Hf) is contained, wherein In, Zn, and Hf are contained in predetermined or given composition ratios.
摘要:
Provided are a transistor, a method of manufacturing the transistor, and an electronic device including the transistor. The transistor may include a passivation layer on a channel layer, a source, a drain, and a gate, wherein the component of the passivation layer is varied in a height direction. The passivation layer may have a multi-layer structure including a silicon oxide layer, a silicon oxynitride layer, and a silicon nitride layer sequentially stacked. The channel layer may include an oxide semiconductor.
摘要:
Example embodiments are directed to a switching device of an active display device and a method of driving the switching device, such that electrical reliability of the active display device is improved. The switching device of the active display device includes a plurality of thin film transistors (TFTs) that are connected in series. Except for a refresh time duration during which the plurality of TFTs of the switching device are simultaneously turned ON, a positive voltage is applied to at least one of the plurality of TFTs of the switching device so that a reliability of the switching device may be improved.