摘要:
Methods of Making Carbon Nanotube Films, Layers, Fabrics, Ribbons, Elements and Articles are disclosed. Carbon nanotube growth catalyst is applied on to a surface of a substrate. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes. Portions of the non-woven fabric are selectively removed according to a defined pattern to create the article. A non-woven fabric of carbon nanotubes may be made by applying carbon nanotube growth catalyst on to a surface of a wafer substrate to create a dispersed monolayer of catalyst. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes in contact and covering the surface of the wafer and in which the fabric is substantially uniform density.
摘要:
Methods of using thin metal layers to make Carbon Nanotube Films, Layers, Fabrics, Ribbons, Elements and Articles are disclosed. Carbon nanotube growth catalyst is applied on to a surface of a substrate, including one or more thin layers of metal. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes. Portions of the non-woven fabric are selectively removed according to a defined pattern to create the article. A non-woven fabric of carbon nanotubes may be made by applying carbon nanotube growth catalyst on to a surface of a wafer substrate to create a dispersed monolayer of catalyst. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes in contact and covering the surface of the wafer and in which the fabric is substantially uniform density.
摘要:
Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric. Under certain embodiments, the nanotube article is electromechanically deflectable into contact with the conductive trace and the contact is either a volatile state or non-volatile state depending on the device construction. Under certain embodiments, the vertically oriented device is arranged into various forms of three-trace devices. Under certain embodiments, the channel may be used for multiple independent devices, or for devices that share a common electrode.
摘要:
A nanotube based microstrip antenna element is provided along with arrays of same. The nanotube based microstrip antenna element comprises a dielectric substrate layer sandwiched between a ground plane layer and a conductive nanotube layer, the conductive nanotube layer shaped to form a radiating structure. In more advanced embodiments, the nanotube based microstrip antenna element further includes an integrated two terminal nanotube switch device such as to provide a selectability function to such microstrip antenna elements and reconfigurable arrays of same. Anisotropic nanotube fabric layers are also used to provide substantially transparent microstrip antenna structures which can be deposited over display screens and the like.
摘要:
Resistive elements include a patterned region of nanofabric having a predetermined area, where the nanofabric has a selected sheet resistance; and first and second electrical contacts contacting the patterned region of nanofabric and in spaced relation to each other. The resistance of the element between the first and second electrical contacts is determined by the selected sheet resistance of the nanofabric, the area of nanofabric, and the spaced relation of the first and second electrical contacts. The bulk resistance is tunable.
摘要:
Under one aspect, a method of cooling a circuit element includes providing a thermal reservoir having a temperature lower than an operating temperature of the circuit element; and providing a nanotube article in thermal contact with the circuit element and with the reservoir, the nanotube article including a non-woven fabric of nanotubes in contact with other nanotubes to define a plurality of thermal pathways along the article, the nanotube article having a nanotube density and a shape selected such that the nanotube article is capable of transferring heat from the circuit element to the thermal reservoir.
摘要:
Under one aspect, a resonator 400 includes a nanotube element 410 including a non-woven fabric of unaligned nanotubes and having a thickness, and a support structure 404 defining a gap 406 over which the nanotube element 410 is suspended, the thickness of the nanotube element 410 and the length of the gap 406 being selected to provide a pre-specified resonance frequency for the resonator 400 The resonator 400 also includes a conductive element 412 in electrical contact with the nanotube element 410, a drive electrode 408 in spaced relation to the nanotube element 410, and power logic in electrical contact with die at least one drive electrode 408 The power logic provides a series of electrical pulses at a frequency selected to be about the same as the pre-specified resonance frequency of the resonator 400 to the drive electrode 408 during operation of the resonator 400, such that the nanotube element 410 responds to the series of electrical pulses applied to the drive electrode 408 by making a series of mechanical motions at the resonance frequency of the resonator 400.
摘要:
Manufacturers encounter limitations in forming low resistance ohmic electrical contact to semiconductor material P-type Gallium Nitride (p-GaN), commonly used in photonic applications, such that the contact is highly transparent to the light emission of the device. Carbon nanotubes (CNTs) can address this problem due to their combined metallic and semiconducting characteristics in conjunction with the fact that a fabric of CNTs has high optical transparency. The physical structure of the contact scheme is broken down into three components, a) the GaN, b) an interface material and c) the metallic conductor. The role of the interface material is to make suitable contact to both the GaN and the metal so that the GaN, in turn, will make good electrical contact to the metallic conductor that interfaces the device to external circuitry. A method of fabricating contact to GaN using CNTs and metal while maintaining protection of the GaN surface is provided.
摘要:
Methods for using carbon nanomaterials to alter the operational output of a device are described herein. The methods can include providing a device that contains a carbon nanomaterial in a first state, and applying an input stimulus to the carbon nanomaterial so as to change the first state into a second state. In the first state, the carbon nanomaterial can be used to produce a normal operational output of the device, whereas the device can produce an altered operational output when the carbon nanomaterial is in the second state. When producing an altered operational output, the device can continue operating, but the altered operational output can be non-indicative of the true operational state of the device. Devices containing a carbon nanomaterial that can be reconfigured from a normal operational output to an altered operational output are also described herein.
摘要:
Under one aspect, a resonator 400 includes a nanotube element 410 including a non-woven fabric of unaligned nanotubes and having a thickness, and a support structure 404 defining a gap 406 over which the nanotube element 410 is suspended, the thickness of the nanotube element 410 and the length of the gap 406 being selected to provide a pre-specified resonance frequency for the resonator 400 The resonator 400 also includes a conductive element 412 in electrical contact with the nanotube element 410, a drive electrode 408 in spaced relation to the nanotube element 410, and power logic in electrical contact with die at least one drive electrode 408 The power logic provides a series of electrical pulses at a frequency selected to be about the same as the pre-specified resonance frequency of the resonator 400 to the drive electrode 408 during operation of the resonator 400, such that the nanotube element 410 responds to the series of electrical pulses applied to the drive electrode 408 by making a series of mechanical motions at the resonance frequency of the resonator 400.