摘要:
Endolumenal prostheses that readily and extensively convert from a delivery configuration to a deployed configuration are disclosed. Endolumenal prostheses may be fabricated from one or more shape memory polymers, a high modulus elastomer, a polymer that is both elastomeric and exhibits shape memory behavior, a hydrogel, or some combination thereof. Polymers used to fabricate the prostheses are selectively synthesized to exhibit desired characteristics such as crystallinity, strain fixity rate, strain recovery rate, elasticity, tensile strength, mechanical strength, cross-linking density, extent physical cross-linking, extent of covalent cross-linking, extent of interpenetrating networks, rate of erosion, heat of fusion, crystallization temperature, and acidity during erosion. The endolumenal prostheses convert to the deployed configuration following delivery to a treatment site, upon exposure to an initiator either present within the body naturally or introduced into the body.
摘要:
Methods and systems are provided for microscale lyophilization or microscale drying of agents of interest, such as pharmaceutical agents or other molecules that are unstable or easily degraded in solution. The drying method includes (a) providing a liquid comprising an agent of interest dissolved or dispersed in a volatile liquid medium; (b) depositing a microquantity (between 1 nL and 10 μL) of the liquid onto a preselected site of a substrate; and then (c) drying the microquantity by volatilizing the volatile liquid medium to produce a dry, solid form of the agent of interest. The lyophilization method includes freezing the microquantity of liquid after step (b) and before step (c). By processing the agent of interest in microquantities in controlled contact with a substrate surface, improved heat and mass transfer is provided, yielding better process control over drying of the agent of interest compared to conventional bulk drying or lyophilization.
摘要:
A resorbable interbody fusion device for use in spinal fixation is disclosed. The device is composed of 25–100% bioresorbable or resorbable material. The interbody fusion device of the invention can be in any convenient form, such as a wedge, screw or cage. Preferably, the resorbable device of the invention is in the shape of a tapered wedge or cone, which further desirably incorporates structural features such as serrations or threads better to anchor the device in the adjoining vertebrae. The preferred device further comprises a plurality of peripheral voids and more desirably a central void space therein, which may desirably be filled with a grafting material for facilitating bony development and/or spinal fusion, such as an autologous grafting material. As the preferred material from which the resorbable interbody fusion device is manufactured is most likely to be a polymer that can produce acidic products upon hydrolytic degradation, the device preferably further includes a neutralization compound, or buffer, in sufficiently high concentration to decrease the rate of pH change as the device degrades, in order to prevent sterile abscess formation caused by the accumulation of unbuffered acidic products in the area of the implant.
摘要:
Devices are provided for the controlled release of drug or other molecules. The devices include (1) a substrate, which optionally includes two or more substrate portions bonded together, (2) at least two reservoirs in the substrate, (3) a release system disposed in the reservoirs that includes the molecules for release and optionally a matrix material, and (4) active or passive means for controlling release of the molecules from the reservoirs. In one embodiment, a reservoir cap is positioned on, or within a portion of, the reservoir and over the molecules, so that the molecules are controllably released from the device by diffusion through or upon disintegration of the reservoir cap.
摘要:
Method for making three-dimensional structures. A template is provided having at least two conductive regions separated by a non-conductive region. The template is disposed in an electrolyte in an electrodeposition cell and a voltage is established between one of the conductive regions and an electrode in the cell. Material is deposited on the one of the conductive regions connected to the voltage and subsequently bridges to the other conductive region with material deposition continuing on both of the at least two regions. The non conductive region may be a gap and the gap dimension is selected to regulate height differences between the at least two conductive regions.
摘要:
Improved aerodynamically light particles for delivery to the pulmonary system, and methods for their preparation and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm3 and a mass mean diameter between 5 μm and 30 μm. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear α-hydroxy-acid polyester backbone having at least one amino acid group incorporated herein and at least on poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 μm, can be used for enhanced delivery of a therapeutic or diagnostic agent to the alveolar region of the lung. The aerodynamically light particles optionally can incorporate a therapeutic or diagnostic agent, and may be effectively aerosolized for administration to the respiratory tract to permit systemic or local delivery of a wide variety of incorporated agents.
摘要翻译:提供用于递送至肺系统的改善的空气动力学轻微颗粒,以及其制备和给药方法。 在优选的实施方案中,空气动力学轻微颗粒由可生物降解的材料制成,并且振实密度小于0.4g / cm 3,质量平均直径在5μm和30μm之间。 颗粒可以由可生物降解的材料如可生物降解的聚合物形成。 例如,颗粒可以由官能化的聚酯接枝共聚物形成,所述官能化聚酯接枝共聚物由具有至少一个引入本文的氨基酸基团和至少在从氨基酸延伸的聚(氨基酸)侧链上的直链α-羟基酸聚酯主链组成 集团在聚酯骨干。 在一个实施方案中,具有大平均直径(例如大于5μm)的空气动力学轻的颗粒可用于增强治疗或诊断剂递送至肺的肺泡区域。 空气动力学轻微颗粒任选地可以掺入治疗剂或诊断剂,并且可以有效地雾化用于给予呼吸道以允许各种并入药剂的全身或局部递送。
摘要:
Shape memory polymer compositions, articles of manufacture thereof, and methods of preparation and use thereof are described. The shape memory polymer compositions can hold more than one shape in memory. Suitable compositions include at least one hard segment and at least one soft segment. At least one of the hard or soft segments can contain a crosslinkable group, and the segments can be linked by formation of an interpenetrating network or a semi-interpenetrating network, or by physical interactions of the blocks. Objects can be formed into a given shape at a temperature above the Ttrans of the hard segment, and cooled to a temperature below to Ttrans of the soft segment. If the object is subsequently formed into a second shape, the object can return to its original shape by heating the object above the Ttrans of the soft segment and below the Ttrans of the hard segment.
摘要:
Polymeric materials are used,to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
Improved methods for the production of tissue-engineered constructs, including muscular tissue constructs such as vascular constructs, are disclosed. The methods include the use of improved substrates for cell growth, improved cell culture media for cell growth, and the use of distensible bodies to impart pulsatile stretching force to lumens of constructs during growth. Also disclosed are improved products and methods for making those products, including substrates and cell culture media, for tissue engineering and tissue culture generally. Improved muscular tissue constructs, including vascular constructs, are also disclosed, which may be used in medicine for the repair or replacement of damaged natural structures. In an embodiment, a muscular, tubular tissue-engineered construct is prepared having a wall of mammalian smooth muscle cells oriented circumferentially about a lumen of the construct at a cell density of at least 107 cells/cc.
摘要:
Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of biodegradable material and have a tap density of less than 0.4 g/cm3 and a mass mean diameter between 5 &mgr;m and 30 &mgr;m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung. The aerodynamically light particles incorporating a therapeutic agent may be effectively aerosolized for administration to the respiratory tract to permit systemic or local delivery of wide variety of therapeutic agents.