摘要:
A process of preparing DRAM cells with collar isolation layers that isolate the trench top with vertical cell and active area from the buried plate to eliminate the space normally required by a final collar, comprising: a) etching a deep trench (DT) in a substrate over which a patterned pad stack serving as a mask is positioned; b) depositing a silicon nitride sacrificial collar liner in a top art of the trench; c) etching below the sacrificial collar to form a bottle structure in a lower part of the trench; d) forming an oxide layer, a nitride layer over the oxide layer, depositing a resist fill, and affecting a recess of the resist fill to a recess depth below the top of the bottle formation; e) affecting a nitride etch followed by a resist strip f) affecting thermal oxidation using the nitride layer as a mask to form a closed layer of oxide at the top of the trench bottle shaped structure; g) affecting a nitride strip; and h) forming a buried plate by gas phase doping to cause isolation between the active area and the buried plate.
摘要:
A device and method for fabricating a gate structure are disclosed. A first conductive material is deposited in a trench formed in a substrate and the first conductive material is recessed to a level below a top surface of the substrate in the trench. A dielectric layer is conformally deposited in contact with the first conductive material in the trench and in contact with sidewalls of the trench. A hole is formed in the dielectric layer to expose the first conductive layer, and the hole is filled with a conductive material. A gate stack is formed over the trench such that an electrical connection is made to the first conductive layer in the trench by employing the conductive material through the dielectric layer.
摘要:
A semiconductor device includes a first region of a first conductivity type and a body region of a second conductivity type, the first conductivity type being different from the second conductivity type. The body region is disposed on a side of a first surface of the semiconductor substrate. The semiconductor device further includes a plurality of trenches arranged in the first surface of the substrate, the trenches extending in a first direction having a component perpendicular to the first surface. Doped portions of the second conductivity type are adjacent to a lower portion of a sidewall of the trenches. The doped portions are electrically coupled to the body region via contact regions. The semiconductor device further includes a gate electrode disposed in an upper portion of the trenches.
摘要:
A semiconductor device includes a first region of a first conductivity type and a body region of a second conductivity type, the first conductivity type being different from the second conductivity type. The body region is disposed on a side of a first surface of the semiconductor substrate. The semiconductor device further includes a plurality of trenches arranged in the first surface of the substrate, the trenches extending in a first direction having a component perpendicular to the first surface. Doped portions of the second conductivity type are adjacent to a lower portion of a sidewall of the trenches. The doped portions are electrically coupled to the body region via contact regions. The semiconductor device further includes a gate electrode disposed in an upper portion of the trenches.
摘要:
An integrated circuit includes a semiconductor body with a first semiconductor layer and a second semiconductor layer arranged adjacent the first semiconductor layer in a vertical direction of the semiconductor body. The integrated circuit further includes a switching device with a control terminal and a load path between a first load terminal and a second load terminal, and a rectifier element connected in parallel with at least one section of the load path. The switching device is integrated in the first semiconductor layer and the rectifier element is integrated in the second semiconductor layer.
摘要:
Embodiments are directed to memory devices comprising a bipolar junction transistor having an emitter, a base and a collector; a first side of a resistance changing memory element coupled to the emitter of the bipolar junction transistor; and a MOSFET coupled to the base of the bipolar junction transistor.
摘要:
Methods of forming isolation trenches, semiconductor devices, structures thereof, and methods of operating memory arrays are disclosed. In one embodiment, an isolation trench includes a recess disposed in a workpiece. A conductive material is disposed in a lower portion of the channel. An insulating material is disposed in an upper portion of the recess over the conductive material.
摘要:
One possible embodiment is a method of manufacturing a structure on or in a substrate with the following steps a) positioning at least one spacer structure by a spacer technique on the substrate, b) using at least one of the groups of the spacer structure and a structure generated by the spacer structure as a mask for a subsequent particle irradiation step for generating a latent image in the substrate c) using the latent image for further processing the substrate.
摘要:
Embodiments are directed to memory devices comprising a bipolar junction transistor having an emitter, a base and a collector; a first side of a resistance changing memory element coupled to the emitter of the bipolar junction transistor; and a MOSFET coupled to the base of the bipolar junction transistor.
摘要:
The present invention provides an integrated semiconductor memory device comprising: a semiconductor substrate; a plurality of active area lines formed in said semiconductor substrate, each of which active area lines includes a plurality of memory cell selection transistors having a respective wordline contact, bitline contact, and node contact; a plurality of filled insulation trenches arranged between said active area lines; a plurality of rewiring stripes each of which rewires an associated node contact of a memory cell selection transistor from an active area line to above a neighboring filled insulation trench so as to form a respective rewired node contact; a plurality of bitlines being aligned with and running above said active area lines which bitlines are connected to the bitline contacts of the memory cell selection transistors of the respective active area lines; a plurality of wordlines running perpendicular to said bitlines which are connected to the wordline contacts of the memory cell selection transistors of corresponding active area lines; and a plurality of memory cell capacitors each of which is connected to a respective rewired node contact of an associated memory cell selection transistor. The present invention also provides a corresponding manufacturing method for an integrated semiconductor memory device and a memory cell.