Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
There is provided an image display system. The image display system includes a touch controller configured to generate first touch event information and second touch event information each corresponding to a touch signal output from a touch panel, a display data generating unit configured to generate first display data to be displayed during one frame in response to the first touch event information, a graphic processing unit (GPU) configured to combine second display data with the first display data so as to generate output image data, the second display data corresponding to the second touch event information supplied from the touch controller, and a display controller configured to supply output image data generated by the GPU to a display panel.
Abstract:
A thin film transistor array panel includes: a gate wiring layer disposed on a substrate; an oxide semiconductor layer disposed on the gate wiring layer; and a data wiring layer disposed on the oxide semiconductor layer, in which the data wiring layer includes a main wiring layer including copper and a capping layer disposed on the main wiring layer and including a copper alloy.
Abstract:
A thin film transistor array panel includes: a gate wiring layer disposed on a substrate; an oxide semiconductor layer disposed on the gate wiring layer; and a data wiring layer disposed on the oxide semiconductor layer, in which the data wiring layer includes a main wiring layer including copper and a capping layer disposed on the main wiring layer and including a copper alloy.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor, a thin film transistor array panel including the same, and a method of manufacturing the same are provided, wherein the thin film transistor includes a channel region including an oxide semiconductor, a source region and a drain region connected to the channel region and facing each other at both sides with respect to the channel region, an insulating layer positioned on the channel region, and a gate electrode positioned on the insulating layer, wherein an edge boundary of the gate electrode and an edge boundary of the channel region are substantially aligned.
Abstract:
A thin film transistor display panel according to an exemplary embodiment of the present invention includes a substrate, a first insulating layer formed on the substrate, a semiconductor layer formed on the first insulating layer, a second insulating layer formed on the semiconductor layer, and a gate electrode formed on the second insulating layer, in which the first insulating layer includes a light blocking material, and a thickness of the first insulating layer is greater than or equal to a thickness of the second insulating layer.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor, a thin film transistor array panel including the same, and a method of manufacturing the same are provided, wherein the thin film transistor includes a channel region including an oxide semiconductor, a source region and a drain region connected to the channel region and facing each other at both sides with respect to the channel region, an insulating layer positioned on the channel region, and a gate electrode positioned on the insulating layer, wherein an edge boundary of the gate electrode and an edge boundary of the channel region are substantially aligned.