摘要:
Patient respiration may be characterized using a marked respiration waveform involving a respiration waveform annotated with symbols, markers or other indicators representing one or more respiration characteristics. A respiration waveform may be acquired by sensing a physiological parameter modulated by respiration. A marked respiration waveform may be generated based on the acquired respiration waveform and one or more detected respiration waveform characteristics and/or respiration-related conditions. One or more components used to generate the marked respiratory waveform may be fully or partially implantable.
摘要:
A sleep quality assessment approach involves collecting data based on detected physiological or non-physiological patient conditions. At least one of detecting patient conditions and collecting data is performed using an implantable device. Sleep quality may be evaluated using the collected data by an imlantable or patient-external sleep quality processor. One approach to sleep quality evaluation involves computing one or more summary metrics based on occurrences of movement disorders or breathing disorders during sleep.
摘要:
Disordered breathing events may be classified as central, obstructive or a combination of central an obstructive in origin based on patient motion associated with respiratory effort. Central disordered breathing is associated with disrupted respiration with reduced respiratory effort. Obstructive disordered breathing is associated with disrupted respiration accompanied by respiratory effort. A disordered breathing classification system includes a disordered breathing detector and a respiratory effort motion sensor. Components of the disordered breathing classification system may be fully or partially implantable.
摘要:
The health state of a subject is automatically evaluated or predicted using at least one implantable device. In varying examples, the health state is determined by sensing or receiving information about at least one physiological process having a circadian rhythm whose presence, absence, or baseline change is associated with impending disease, and comparing such rhythm to baseline circadian rhythm prediction criteria. Other chronobiological rhythms beside circadian may also be used. The baseline prediction criteria may be derived using one or more past physiological process observation of the subject or population of subjects in a non-disease health state. The prediction processing may be performed by the at least one implantable device or by an external device in communication with the implantable device. Systems and methods for invoking a therapy in response to the health state, such as to prevent or minimize the consequences of predicted impending heart failure, are also discussed.
摘要:
A tachyarrhythmia detection and classification system classifies tachyarrhythmias based on an analysis of morphological features of a cardiac signal enhanced by using one or more physiological parameters indicative of hemodynamic stability and/or activity level. The tachyarrhythmia detection and classification system computes a measure of similarity between an arrhythmic waveform of the cardiac signal, a template waveform for that cardiac signal, such as a correlation coefficient representative of the correlation between morphological features of the arrhythmic waveform and morphological features of the template waveform. A detected tachyarrhythmia episode is classified by comparing the measure of similarity to a threshold that is dynamically adjusted using the one or more physiological parameters.
摘要:
Devices and methods for detecting disordered breathing involve determining that the patient is asleep and sensing one or more signals associated with disordered breathing indicative of sleep-disordered breathing while the patient is asleep. Sleep-disordered breathing is detected using the sensed signals associated with disordered breathing. The sensed signals associated with disordered breathing may also be used to acquire a respiration pattern of one or more respiration cycles. Characteristics of the respiration pattern are determined. The respiration pattern is classified as a disordered breathing episode based on the characteristics of the respiration pattern. One or more processes involved in the detection of disordered breathing are performed using an implantable device.
摘要:
An approach to providing disordered breathing therapy includes delivering electrical stimulation therapy modifying a patient's baroreflex response. Disordered breathing therapy may be delivered in response to prediction or detection of disordered breathing events. Various conditions affecting the patient may be evaluated and the baroreflex therapy modified. The therapy may be modified to improve therapy efficacy, to reduce an impact to the patient and/or to mitigate therapy interactions.
摘要:
An apparatus comprises a physiologic sensing circuit and a control circuit. The physiologic sensing circuit is configured to sense an electrical respiration signal representative of respiration of a subject. The control circuit includes a respiration monitor circuit and a therapy circuit. The respiration monitor circuit is configured to extract a respiration parameter from the respiration signal and detect that a value of the respiration parameter is outside of a target value range for the respiration parameter. The therapy circuit is configured to deliver neural stimulation to the carotid sinus of the subject to stimulate respiration and to adjust respiration to maintain the value of the respiration parameter within the target value range.
摘要:
A system, device and method for neural control of respiration are provided. One aspect of this disclosure relates to an implantable medical device for sensing and controlling respiration during incidence of central respiratory diseases. According to various embodiments, the device includes a sensing circuit to receive sensed signals representative of an incidence of a central respiratory disease. The device also includes a neural stimulator adapted to generate neural stimulation signals, and a controller to communicate with the sensing circuit and to control the neural stimulator to stimulate a desired neural target in response to the detection of the incidence of a central respiratory disease. In an embodiment, the device includes a plurality of sensors which are adapted to monitor physiological parameters to detect the incidence of a central respiratory disease and to send signals to the sensing circuit. Other aspects and embodiments are provided herein.
摘要:
Systems and methods involve automatic activation, de-activation or modification of therapies or other medical processes based on brain state. A medical system includes a sensor system having one or more sensors configured to sense signals related to the brain state of the patient. A brain state analyzer detects various brain states, including sleep stage and/or brain seizures. A controller uses the brain state detection information to control a medical system configured to perform at least one respiratory or cardiac process. Methods involve sensing signals related to brain state and determining the brain state of a patient based on the sensed signals. At least one respiratory or cardiac medical process is controlled based on the patient's brain state.