Abstract:
A method of this invention for treating body tissues containing cancerous cells or non-malignant tumors with RF ablation, alone or in combination with systemic or localized chemotherapy comprising introducing a stylet comprising an electrode surface and a sleeve longitudinally moveable thereon into the vicinity of the body tissues, retracting the sleeve from a portion of the electrode surface, and supplying RF power to the electrode surface sufficient to heat the tissue to a temperature of above about 45.degree. C. for a time to cause reduction of tissue mass in the vicinity of the electrode. The RF power supplied to the electrode surface is sufficient to effect a desiccated fluid diffusion barrier capsule surrounding the body tissue being treated. The stylet can include a hollow tube having fluid distribution ports therein, and the method can include the step of passing fluid through one or more distribution ports into the body tissue being treated. The fluid can be saline or a chemotherapeutic fluid such as liquid or gas containing a cytotoxic agent, for example. The fluid can be administered in a variety of procedures. The fluid can be passed through a distribution port into the body tissue before, during and/or after the RF power is supplied to the electrode surface, for example. Preferably, the fluid is introduced after a barrier capsule has been formed. The devices comprises electrodes having a hollow core and a closed sharpened distal tip. The electrode has a plurality of fluid distribution ports therein for distribution of fluid treatment agents into the tissue.
Abstract:
A medical probe device comprising a catheter having a stylet guide housing with at least one stylet port in a side thereof and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissues. The stylet guide housing has an optical viewing means positioned for viewing the stylet and adjacent structure which includes a fiber optic channel means for receiving a fiber optic viewing device. The fiber optic channel means can include a guide port means for directing longitudinal movement of a fiber optic device with respect to the stylet guide means in a viewing zone and a flushing liquid channel in the stylet guide housing having an exit port positioned to direct flushing liquid issuing therefrom across the end of a fiber optic device when positioned in the viewing zone. The optical viewing means can comprise a viewing window positioned in the stylet guide housing for viewing the stylet when it is directed outward from its respective stylet port. The optical viewing means can include a fiber optic channel in the stylet guide housing for receiving the a fiber optic viewing device and aligning the viewing end thereof with the viewing window. Windowed devices can include a flushing liquid channel in the stylet guide housing having an exit port positioned to direct flushing liquid issuing therefrom across a surface of the viewing window.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.
Abstract:
A tissue ablation apparatus comprises a first elongated delivery device including a lumen and an obturator with a tissue piercing distal end. The obturator is positionable in the lumen of the first elongated delivery device. A second elongated delivery device is positionable in the lumen of the first elongated delivery device. An energy delivery device is positionable in the second elongated delivery device. The energy delivery device includes at least a first and a second RF electrode each with a tissue piercing distal portion. The first and second RF electrodes are positionable in the second elongated delivery device in a compacted state and deployable from the second elongated delivery device with curvature in a deployed state. The first and second RF electrodes exhibit a changing direction of travel when advanced from the second elongated delivery device to a selected tissue site. At least one infusion port is coupled to one of the first elongated delivery device, the second elongated delivery device, the energy delivery device, the first RF electrode or the second RF electrode. An electrode advancement member is coupled to the first and second RF electrodes. The advancement member is configured to advance the RF electrode out of the elongated delivery device.
Abstract:
A method of creating a lesion in tissue with infusion includes providing an apparatus comprising a first elongated delivery device with a lumen, an obturator with a second elongated delivery device and an energy delivery device positional in a lumen of the first elongated delivery device. The energy device includes at least a first and a second RF electrode each with a tissue piercing distal portion, the first and second RF electrodes being deployable from the first elongated delivery device with curvature in a deployed state. The energy delivery device includes an infusion lumen and at least one infusion port. The obturator and second delivery device are introduced to a selected tissue site. The obturator is removed from a lumen of the second delivery device and the first delivery device and energy delivery device are introduced into the lumen of the second delivery device. The first and second RF electrodes are advanced from the first delivery device to at least partially surround a target tissue site. The target tissue site is at least partially infused with an infusion fluid. Energy is delivered from the energy delivery device to the target tissue site and cell necrosis is created at the target tissue site.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.
Abstract:
A method and an apparatus is disclosed for delivering controlled heat to perform ablation to treat the benign prosthetic hypertrophy or hyperplasia (BPH). According to the method and the apparatus, the energy is transferred directly into the tissue mass which is to be treated in such a manner as to provide tissue ablation without damage to surrounding tissues. Automatic shut-off occurs when any one of a number of surrounding areas to include the urethra or surrounding mass or the adjacent organs exceed predetermined safe temperature limits. The constant application of the radio frequency energy over a maintained determined time provides a safe procedure which avoids electrosurgical and other invasive operations while providing fast relief to BPH with a short recovery time. The procedure may be accomplished in a doctor's office without the need for hospitalization or surgery.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.
Abstract:
A medical probe device comprising a catheter having a stylet guide housing with at least one stylet port in a side thereof and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissues. The stylet guide housing has an optical viewing means positioned for viewing the stylet and adjacent structure which includes a fiber optic channel means for receiving a fiber optic viewing device. The fiber optic channel means can include a guide port means for directing longitudinal movement of a fiber optic device with respect to the stylet guide means in a viewing zone and a flushing liquid channel in the stylet guide housing having an exit port positioned to direct flushing liquid issuing therefrom across the end of a fiber optic device when positioned in the viewing zone. The optical viewing means can comprise a viewing window positioned in the stylet guide housing for viewing the stylet when it is directed outward from its respective stylet port. The optical viewing means can include a fiber optic channel in the stylet guide housing for receiving the a fiber optic viewing device and aligning the viewing end thereof with the viewing window. Windowed devices can include a flushing liquid channel in the stylet guide housing having an exit port positioned to direct flushing liquid issuing therefrom across a surface of the viewing window.
Abstract:
A medical probe device comprising a catheter having a stylet guide housing with at least one stylet port in a side thereof and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissue. The stylet comprises an electrical central conductor which is enclosed within an insulating or dielectric sleeve surrounded by a conductive layer terminated by an antenna to selectively deliver microwave or radio frequency energy to target tissue. One embodiment includes the electrical conductor being enclosed within a non-conductive sleeve which itself is enclosed within a conductive sleeve in a coaxial cable arrangement to form a microwave transmission line terminated by an antenna. Another embodiment includes a resistive element near the distal end of the stylet which couples the center electrode to an outer conductor to generate joulian heat as electromagnetic energy is applied, such as an RF signal.