Abstract:
A system and method for actuating one or more engine valves to produce one or more internal exhaust gas recirculation events is disclosed. The method of the present invention is a method of providing exhaust gas recirculation (EGR) in a multi-cylinder engine, each engine cylinder having at least one engine valve, intake and exhaust manifolds, and a valve actuator. The method comprises the steps of: imparting motion to the value actuator; actuating the engine valve of a first engine cylinder responsive to the imparted motion; determining a first and a second engine parameter level; modifying the imparted motion responsive to the level of the first engine parameter level and the second engine parameter level to produce an exhaust gas recirculation event.
Abstract:
The present invention is directed to a system and method for controlling an engine braking system having an engine with at least one intake and exhaust valve, intake and exhaust manifolds, a turbocharger connected to the intake and exhaust manifolds, and at least one pressure regulation valve. The method may comprise the steps of measuring a value of an engine parameter; adjusting the pressure of the exhaust manifold responsive to the measured engine parameter value; actuating the at least one exhaust valve; and adjusting a pressure gradient across the turbocharger.
Abstract:
An extrusion-compression molding process is provided for making optical articles wherein a melt shot of optical polymer extrudate is fed to sequentially moving lower dies of a die set including a lower die and an upper die and then the upper die positioned on top of the melt shot containing lower die and the die set compressed forming the optical article. After the optical article is formed, the lower die and upper die are separated and recycled for forming additional optical articles. The optical polymeric material may be in the form of pellets and melted in an extruder. A reaction extruder may also be employed where the optical polymeric material is produced in the reaction extruder from optical polymer monomers. A shuttle carriage is preferably used to transport the lower die, melt shot containing lower die and melt shot containing die set through the steps of the molding process. A control system is used to obtain input data and generate output signals to monitor and control the process steps.
Abstract:
A self-rotating flow meter includes a housing, a rotating mechanism and a sensor. The rotating mechanism is disposed in a chamber of the housing between an inlet port and an outlet port. The sensor is disposed in the housing and near the rotating mechanism. The rotation mechanism contains inflow and outflow passages in a rotating shaft and a rotating disk respectively. The inlet flow passage has a centerline that is coincident with or parallel to the centerline of the rotating shaft. The centerline of any outlet flow passage in the rotating disk and the centerline of the rotating shaft are in two different planes and have a distance between them.
Abstract:
An auxiliary valve actuating mechanism of an engine includes a first valve actuating mechanism and an auxiliary valve actuating mechanism. The auxiliary valve actuating mechanism comprises an auxiliary cam, an auxiliary rocker-arm shaft, an auxiliary rocker arm, an eccentric rocker arm bushing and a bushing actuation device. One end of the auxiliary rocker arm constitutes a motion pair with the auxiliary cam and the other end is above the valve. The bushing actuation device actuates the eccentric rocker arm bushing to rotate between an operating position and a non-operating position.
Abstract:
Apparatus and method are disclosed for converting an internal combustion engine from a normal engine operation (20) to an engine braking (or retarding) operation (10). The engine has an exhaust valve train containing two exhaust valves (300), a valve bridge (400) and an exhaust valve lifter (200). The apparatus has an actuation means (100) including a hydraulic system integrated into the exhaust valve train. The hydraulic system contains a braking piston (160) slidably disposed in the valve bridge between an inoperative position (0) and an operative position (1). In the inoperative position, the braking piston is retracted and the actuation means disengaged from the normal engine operation. In the operative position, the hydraulic piston is extended and the actuation means opens one of the two exhaust valves (300a) for the engine braking operation. The apparatus also includes engine brake reset means (150) for modifying the valve lift profile generated by the enlarged normal cam lobe (220) when the small braking cam lobes (232) and (233) are integrated into the normal exhaust cam (230). The apparatus also has a control means (50) for moving the actuation means between the inoperative position and the operative position.
Abstract:
Apparatus and method are disclosed for converting an internal combustion engine from a normal engine operation (20) to an engine braking operation (30). The engine has an exhaust valve train containing at least one exhaust valve (300a or 300) and an exhaust valve lifter (200). The apparatus has an actuation means (100) including a dedicated load supporting system and a hydraulic system. The hydraulic system is integrated into the exhaust valve train and has a hydraulic piston (160) that can slide between an inoperative position (0) and an operative position (1). In the inoperative position (0), the hydraulic piston (160) is retracted and separated from the dedicated load supporting system, and the actuation means (100) is disengaged from the at least one exhaust valve (300a or 300). In the operative position (1), the hydraulic piston (160) is extended and engaged with the dedicated load supporting system, and the actuation means (100) opens the at least one exhaust valve (300a or 300) for the engine braking operation (30). The dedicated load supporting system includes a dedicated valve lifter (200b) for the engine braking operation (30). The dedicated load supporting system may also includes a housing (125) that is used to hold the at least one exhaust valve (300a or 300) open when the hydraulic piston (160) is at the extended or operative position (1), which is reached after the at least one exhaust valve (300a or 300) is actuated by the normal exhaust valve lifter (200). The apparatus also has a control means (50) for moving the hydraulic piston (160) between the inoperative position (0) and the operative position (1).
Abstract:
A method of determining whether a measured fuel delivery rate determined by a fuel meter of a fuel dispenser corresponds to an actual fuel delivery rate at which fuel is being dispensed to a vehicle through a fuel flow path. The method includes measuring a fuel delivery rate at a given time during a fueling operation, measuring a fuel pressure of the fuel within the fuel flow path at the given time, comparing the measured fuel pressure to a plurality of fuel pressure values from a data set including a plurality of actual fuel delivery rate values that correspond to the plurality of fuel pressure values, retrieving one of the plurality of actual fuel delivery rate values from the data set that corresponds to the measured fuel pressure value; and comparing the measured fuel delivery rate from the fuel meter to the one actual fuel delivery rate value to determine if the measured fuel delivery rate corresponds to the actual fuel delivery rate at which fuel is being dispensed to the vehicle.
Abstract:
A control method for transitioning from positive power to engine braking (and vice-versa) is disclosed. This transition may be made using variable valve actuation and two-stroke braking. The process may involve three engine operation modes: positive power (i.e., firing or non-braking), engine braking, and transition between engine braking and positive power. The intake and exhaust valve actuations provided for each of the different modes of operation may be different from each other.
Abstract:
A system and method for actuating one or more engine valves is provided. In particular, systems and methods for providing variable valve actuation to improve engine performance are provided. Embodiments of the present invention may be used in conjunction with positive power, engine braking, and/or exhaust gas recirculation operation of an internal combustion engine. In one embodiment, the system comprises: a valve train element; a housing disposed intermediate the valve train element and the engine valve; an outer piston slidably disposed in a bore formed in the housing, the outer piston having a cavity formed therein; an inner piston slidably disposed in the outer piston cavity; and a valve in communication with the outer piston cavity, the valve having more than one position, wherein the position of the valve determines the timing of the engine valve event.