摘要:
A system for priming an extracorporeal blood circuit is described. The system includes a fluid circuit with an air venting mechanism, a reversible pump, arterial and venous lines, a prime waste bag and a switchable coupler selectively connecting the arterial and venous lines to the waste bag or alternatively interconnecting the arterial and venous lines. A priming fluid is connected to the circuit and circulated in the circuit under different configurations of the arterial and venous line connections.
摘要:
A system, method and apparatus for performing a renal replacement therapy is provided. In one embodiment, two small high flux dialyzers are connected in series. A restriction is placed between the two dialyzers in the dialysate flow path. The restriction is variable and adjustable in one preferred embodiment. The restriction builds a positive pressure in the venous dialyzer, causing a high degree of intentional backfiltration. That backfiltration causes a significant flow of dialysate through the high flux venous membrane directly into the patient's blood. That backfiltered solution is subsequently ultrafiltered from the patient from the arterial dialyzer. The diffusion of dialysate into the venous filter and removal of dialysate from the arterial dialyzer causes a convective transport of toxins from the patient. Additionally, the dialysate that does not diffuse directly into the patient but instead flows across the membranes of both dialyzers provides a diffusive clearance of waste products.
摘要:
A dialysis system which does not need to use a physiological saline in replenishing a solution or cleaning and priming the dialysis system, does not need a troublesome setting operation and can easily and accurately set a flow rate of a replenisher solution. The dialysis system includes a closed-type water-removal control apparatus 1, a dialyzer 2, a fresh dialysate line 3 as well as a used dialysate line 4, an RO water pressurizing line 5, an RO water pressurizing pump 51 provided in the RO water pressurizing line 5, an artery side blood line 6, a blood pump 61 provided at the artery side blood line 6 and a vein side blood line 7. According to the dialysis system, by pressurizing RO water into a communication line of the used dialysate, dialysate is made to flow from a dialysate flow path 21 into a blood flow path 22 through a dialysis membrane 23 of the dialyzer 2 and the inside of a blood circulation path can be cleaned and primed.
摘要:
A method of adjusting the final conductivity of a batch of dialysate to bring the conductivity down to a desired level is described. The batch of dialysate is prepared by mixing excess quantities (e.g., 5%) of dialysate solution chemicals with water to form a solution with a conductivity greater than that required for the particular batch. A measurement of the dialysate solution is taken. A precise volume of water is added to the dialysate solution to dilute the dialysate to the proper level. The precise volume of water is calculated from a known or estimated total system, the desired conductivity level and the actual conductivity. The resulting diluted dialysate is at the desired conductivity level. Excess dialysate which may be present in the dialysate circuit or associated tanks is then flushed to a drain. In a hemodialysis embodiment, the excess dialysate may be flushed through the dialyzer into the blood lines to rinse any pyrogens from the extracorporeal circuit.
摘要:
A method for withdrawing priming fluid from the extracorporeal circuit of a dialysis machine is described which substantially prevents return of the priming fluid back to the patient. In accordance with the method, priming fluid is drawn from the extracorporeal circuit through the dialyzer membrane and into the dialysate circuit. Blood is introduced into the extracorporeal circuit as the priming fluid is withdrawn through the dialyzer. Withdrawal of the priming fluid may be accomplished by pumping the blood pump in the forward direction at a first rate and operating a pump in the dialysate circuit at a second rate. Valves in the dialysate circuit are operated such that the pump in the dialysate circuit draws priming fluid across the dialyzer membrane into the dialysate circuit, and thereby prevents the priming fluid from being returned to the patient. In a preferred embodiment, the fluid volumes of the arterial and venous portions of the extracorporeal circuit, and the fluid volume of the blood side of the dialyzer, are known in advance. With this information, it is possible to operate the blood and dialysate pumps such that the blood progresses into the arterial and venous lines at different rates such that blood reaches the dialyzer via both lines at about the same time, while at the same time the priming fluid is withdrawn through the dialyzer. Thus, in this embodiment, blood fills the extracorporeal circuit after priming with only a small amount of priming fluid remaining in the blood compartment of the dialyzer being returned to the patient.
摘要:
A hemodialysis machine is described that has an extracorporeal circuit that is primed automatically prior to connection of the patient to the machine. The priming is accomplished by filling the extracorporeal circuit with a priming fluid, such as a saline or dialysate solution or blood. The blood pump and clamps in the arterial and venous lines are operated by a control system in a fashion to create multiple brief pressure pulses in the priming fluid. The pressure pulses shear air bubbles present on the blood side of the dialyzer membrane off the membrane. The blood pump is then operated to clear the bubbles from the dialyzer compartment where they are removed from the priming fluid by conventional bubble trap apparatus.
摘要:
A hemodialysis machine has ports of a disinfection manifold for receiving the arterial and venous line connectors terminating the arterial and venous lines. The ports are in fluid communication with a hydraulic system that circulates disinfection fluid through the machine including the extracorporeal circuit. The ports are constructed so as to provide a gap extending circumferentially around the arterial and venous line connectors. When the disinfection fluid circulates through the ports of the disinfection manifold, the fluid circulates around the external surfaces of the connectors as well as through the internal fluid passages, thereby insuring a complete disinfection of the connectors.
摘要:
A dialysis machine is described which provides for the detection of leakage anywhere in the machine. The machine includes integral water treatment, dialysate preparation and extracorporeal circuit modules. The floor of the machine is constructed in a non-horizontal manner so as to provide a fluid catchment chamber with a fluid sensor. The extracorporeal circuit is mounted above the dialysate preparation module and the water treatment module. In one embodiment, a drain and drain tube allows fluid that leaks from the extracorporeal circuit module to be conducted to the floor of the machine, where the leak can be detected, along with a fluid leak in the water treatment or dialysate preparation modules. In another embodiment, a separate fluid leakage detector is placed at the base of the extracorporeal circuit module for detection of leakage in situ in the extracorporeal circuit, while the catchment chamber and sensor in the base of the machine detect leaks from the other modules.
摘要:
A vessel storing a batch of chemicals for delivery into a dialysate preparation tank includes a machine readable indicator, permitting automatic identification of the contents of the vessel prior to operating the vessel and introduction of chemicals into a tank where the dialysate solution is mixed. Various types of machine-readable indicators may be used, such as, for example, "touch" memory buttons, bar codes, or magnetic strips. Suitable reading devices for the machine-readable indicators are provided for reading the contents of the bottle.
摘要:
A water pressure relief device includes a sample removal port to permit samples of water to be removed from the device. The device has an insert placed in a central chamber disposed generally above the sample removal port. The user inserts an implement such as a syringe into the sample removal port. The tip of the syringe pushes the insert upwards against a pressure relief member, permitting fluid to flow into the base of the device in the vicinity of the sample removal port. The implement then removes or catches the fluid and withdraws the fluid from the pressure relief device.