Abstract:
The present disclosure relates to a device for producing microbubble water by using a ultrasonic vibrator having a maximized amount of dissolved bubbles, a microbubble discharge unit, cell culture medium containing microbubble water and cell culturing method using the same, a high-efficiency mixed fuel using microbubble and apparatus for manufacturing the same.
Abstract:
A device for stabilizing fuel in a fuel tank comprises activated carbon. The activated carbon is configured to be inserted into or installed inside a fuel tank, so that it is in contact with the fuel. The device allows the activated carbon to be in contact with the fuel, but does not allow it to be dispersed in the fuel. A method for stabilizing fuel in a fuel tank comprises adding the device to the fuel tank so that it is in contact with the fuel.
Abstract:
A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
Abstract:
A liquid fuel includes a hydrocarbon-based liquid fuel and an additive mixed with the hydrocarbon-based liquid fuel. The additive includes an endothermic fuel-cracking catalyst.
Abstract:
An internal combustion engine enhancement system for increasing vehicle fuel mileage over a duration of a plurality of tanks of fuel used in a vehicle. The internal combustion engine enhancement system generally includes a fuel additive which includes a volume of carrier fluid and a plurality of fine particles within the carrier fluid. The carrier fluid with the fine particles is added to the fuel in the fuel tank of a vehicle. The fine particles are reduced in size to nanoparticles by dissolving and abrading to less than 1,000 nanometers where after they are transferred to the engine during normal operation of the engine. The nanoparticles lubricate the engine components and fill in voids within the sleeve to increase engine lubricity. Alternatively, larger particles (e.g. 0.25 inches in size) may be added to the fuel where fine particles and nanoparticles are created via abrading and dissolving.
Abstract:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
Abstract:
A liquid fuel includes a hydrocarbon-based liquid fuel and an additive mixed with the hydrocarbon-based liquid fuel. The additive includes an endothermic fuel-cracking catalyst.
Abstract:
The present invention is a solution or colloid of fullerene, SWNTs, or graphene in cyclic terpenes, lactones, terpene-alcohol, fatty-acid alcohols, and lactones following ultrasonication and ultracentrifugation processing, for oil-energy, biological, electrical-thermal applications.The compositions are useful as fuel/oil/grease/gels (synthetic included), oil/fuel/additives/propellants, identification dyes, and heat-transfer fluids. Other functions are phase-change fluids for solar energy power plants, antifreeze, electronic dyes, electrolytic fluid/solvent, electrically-thermally conductive material for electrochemical, dielectric, filler/adhesive for semiconductor, eletro-optical, and liquid crystal substrates/coatings for touch sensitive transmissive or reflective displays.When combined with gelatin the formulations can function as dichroic-optical coatings for thin-films/waveguides/holograms. Such formulations may also be used as photovoltaic paint, electrorheological, thermophoretic-thermodiffusion, electrohydrodynamics, electric propulsion, laser enhancement, plasma jets, and magnetohydrodynamics. Energy use includes high-temperature superconductivity, or hydrogen storage using carbon, alumina, or silica supported Pd, Pt, or Zn catalysts. Biological applications include anticancer, antiviral, antifungal, drug delivery, skin permeable agents, and lubricant use.
Abstract:
Compositions, and processes utilizing such compositions, are provided for reducing mercury emissions during fuel combustion Such compositions comprise a sorbent, a bromine source and a chlorine source Such compositions exhibit improved thermal stability as compared to that of the sorbent by itself.
Abstract:
The present invention relates to a process for reducing sulfur content in petroleum fuel, such as diesel fuel, and raising the Cetane Number to a value above 50.