摘要:
The present invention provides a method of quantifying miR-185 as a potential biomarker in lipid disorder or cardiovascular diseases in human. The present invention also provides a method of modulating miR-185 in regulating LDL and cholesterol metabolism in cells. The present invention has therapeutic potential in the treatment of cholesterol/LDL related cardiovascular diseases in humans.
摘要:
Provided is a vector capable of improving polyisoprenoid production through the introduction of the vector into a plant using gene recombination techniques. A vector comprising: a promoter of a gene encoding Rubber Elongation Factor; and a gene encoding a protein involved in polyisoprenoid biosynthesis, the gene being functionally linked to the promoter.
摘要:
The invention features compositions and methods for the increased production of mevalonate, isoprene, isoprenoid precursor molecules, and/or isoprenoids in microorganisms by engineering a microorganism for increased carbon flux towards mevalonate production in the following enzymatic pathways: (a) citrate synthase, (b) phosphotransacetylase, (c) acetate kinase, (d) lactate dehydrogenase, (e) malic enzyme, and (f) pyruvate dehydrogenase such that one of more of the enzyme activity is modulated. In addition, production of mevalonate, isoprene, isoprenoid precursor molecules, and/or isoprenoids can be further enhanced by the heterologous expression of the mvaE and mvaS genes (such as, but not limited to, mvaE and mvaS genes from the organisms Listeria grayi DSM 20601, Enterococcus faecium, Enterococcus gallinarum EG2, and Enterococcus casseliflavus).
摘要:
The present invention provides a method of quantifying miR-185 as a potential biomarker in lipid disorder or cardiovascular diseases in human. The present invention also provides a method of modulating miR-185 in regulating LDL and cholesterol metabolism in cells. The present invention has therapeutic potential in the treatment of cholesterol/LDL related cardiovascular diseases in humans.
摘要:
A recombinant yeast that makes an isoprenoid compound is provided. The yeast comprises an endogenous mevalonate pathway comprising (i) an enzyme that converts acetyl-CoA to acetoacetyl-CoA, (ii) an enzyme that converts acetoacetyl-CoA to hydroxymethylglutaryl-CoA, (iii) an enzyme that converts hydroxymethylglutaryl-CoA to mevalonic acid, (iv) an enzyme that converts mevalonic acid to phosphomevalonic acid, (v) an enzyme that converts phosphomevalonic acid to phosphomevalonate, and (vi) an enzyme that converts phosphomevalonate to isopentenyl pyrophosphate. The yeast further comprises heterologous nucleic acid sequences encoding an enzyme that converts hydroxymethylglutaryl-CoA to mevalonic acid, an enzyme that converts mevalonic acid to phosphomevalonic acid, an enzyme that converts phosphomevalonic acid to phosphomevalonate, and an enzyme that converts phosphomevalonate to isopentenyl pyrophosphate. Carbon flow through the mevalonate pathway is increased in the recombinant yeast compared to a yeast that does not comprise the heterologous nucleic acid molecule encoding an enzyme that converts hydroxymethylglutaryl-CoA to mevalonic acid.
摘要:
The invention provides an isolated genetically modified non-mammalian organism, wherein the activity of acyl-CoA:sterol acyltransferase/sterol O-acyltransferase (EC 2.3.1.26) and/or diacylglycerol acyltransferase/diacylglycerol O-acyltranferase (EC 2.3.1.20) and/or lecithin cholesterol acyl transferase/phospholipid: diacylglycerol acyltransferase (EC 2.3.1.158) and/or acyl CoA-wax alcohol acyltransferase (EC 2.3.1.75) is reduced or abolished in comparison with a corresponding wildtype organism, methods of use of such an organism, shuttle vehicles for making such an organism and methods for producing such an organism.
摘要:
The invention provides an isolated genetically modified non-mammalian organism, wherein the activity of acyl-CoA: sterol acyltransferase/sterol O-acyltransferase (EC 2.3.1.26) and/or diacylglycerol acyltransferase/diacylglycerol O-acyltranferase (EC 2.3.1.20) and/or lecithin cholesterol acyl transferase/phospholipid: diacylglycerol acyltransferase (EC 2.3.1.158) and/or acyl CoA-wax alcohol acyltransferase (EC 2.3.1.75) is reduced or abolished in comparison with a corresponding wildtype organism, methods of use of such an organism, shuttle vehicles for making such an organism and methods for producing such an organism.
摘要:
The invention features compositions and methods for the increased production of mevalonate, isoprene, isoprenoid precursor molecules, and/or isoprenoids in microorganisms via the heterologous expression of the mvaE and mvaS genes from the organisms Listeria grayi DSM 20601, Enterococcus faecium, Enterococcus gallinarum EG2, and Enterococcus casseliflavus.
摘要:
The invention features compositions and methods for the increased production of mevalonate, isoprene, isoprenoid precursor molecules, and/or isoprenoids in microorganisms by engineering a microorganism for increased carbon flux towards mevalonate production in the following enzymatic pathways: (a) citrate synthase, (b) phosphotransacetylase, (c) acetate kinase, (d) lactate dehydrogenase, (e) malic enzyme, and (f) pyruvate dehydrogenase such that one of more of the enzyme activity is modulated. In addition, production of mevalonate, isoprene, isoprenoid precursor molecules, and/or isoprenoids can be further enhanced by the heterologous expression of the mvaE and mvaS genes (such as, but not limited to, mvaE and mvaS genes from the organisms Listeria grayi DSM 20601, Enterococcus faecium, Enterococcus gallinarum EG2, and Enterococcus casseliflavus).