摘要:
A CO2 reduction electrode includes an active layer on an electrode base. The active layer includes a polymer that includes one or more reaction components selected from a group consisting of a CO2 reduction catalyst and an activator that bonds CO2 so as to form a CO2 reduction intermediate.
摘要:
A catalyst is to avoid the corrosion of a support and still have an active surface area of more than 30 m2/gmetal, preferably more than 50 m2/gmetal, particularly preferably more than 70 m2/gmetal. It has a high dispersion, achieving high stability and high activity (selectivity). A large-surface-area, unsupported catalyst has at least one metal for electrochemical processes, and a BET surface area of at least 30 m2/g, preferably more than 50 m2/g. The BET surface area is achieved by an arrangement of the at least one metal formed as a metal aerogel. Metal aerogels are produced in this manner. Metal aerogels, or metallic polymers, are fine-structured, inorganic superlattices having high porosity. In these metallic polymers, ince individual particles in the nanometer range typically are crosslinked with each other and form the highly porous network structures.
摘要:
An electrochemical device comprises an anode and a cathode. An electrocatalyst mixture is placed between said anode and cathode. The electrocatalyst mixture comprises at least one Catalytically Active Element and, separately, at least one Helper Catalyst comprising an organic molecule, an organic ion, or a mixture of organic molecules and organic ions. The electrocatalyst mixture electrochemically converts carbon dioxide to one or more carbonaceous reaction products via the reaction: CO2+2e−+2H+→carbonaceous reaction products, at overpotentials of 0.9 V or less.
摘要:
An electrochemical conversion method for converting at least a portion of a first mixture comprising hydrocarbon to C2+ unsaturates by repeatedly applying an electric potential difference, V(τ1), to a first electrode of an electrochemical cell during a first time interval τ1; and reducing the electric potential difference, V(τ1), to a second electric potential difference, V(τ2), for a second time interval τ2, wherein τ2≦τ1. The method is beneficial, among other things, for reducing coke formation in the electrochemical production of C2+ unsaturates in an electrochemical cell. Accordingly, a method of reducing coke formation in the electrochemical conversion of such mixtures and a method for electrochemically converting carbon to C2+ unsaturates as well as an apparatus for such methods are also provided.
摘要:
The present invention provides a methanol generation device for generating methanol by reducing carbon dioxide, comprising: a container for storing an electrolyte solution containing carbon dioxide; a cathode electrode disposed in the container so as to be in contact with the electrolyte solution; an anode electrode disposed in the container so as to be in contact with the electrolyte solution; and an external power supply for applying a voltage so that a potential of the cathode electrode is negative with respect to a potential of the anode electrode. The cathode electrode includes a region of Cu1-xAux (0
摘要:
The invention relates to various embodiments of an environmentally beneficial method for reducing carbon dioxide. The methods in accordance with the invention include electrochemically or photoelectrochemically reducing the carbon dioxide in a divided electrochemical cell that includes an anode, e.g., an inert metal counterelectrode, in one cell compartment and a metal or p-type semiconductor cathode electrode in another cell compartment that also contains an aqueous solution of an electrolyte and a catalyst of one or more substituted or unsubstituted aromatic amines to produce therein a reduced organic product.
摘要:
Disclosed are WC/CNT, WC/CNT/Pt composite material and preparation process therefor and use thereof. The WC/CNT/Pt composite material comprises mesoporous spherical tungsten carbide with diameter of 1-5 microns, carbon nanotubes and platinum nanoparticles, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward, and the platinum nanoparticles growing on the surfaces of the mesoporous spherical tungsten carbide and carbon nanotubes. The WC/CNT composite material comprises mesoporous spherical tungsten carbide with diameter of 1-5 microns, and carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward. The WC/CNT/Pt composite material can be used as an electro-catalyst in a methanol flue battery, significantly improving the catalytic conversion rate and the service life of the catalyst. The WC/CNT composite material can be used as an electro-catalyst in the electro-reduction of a nitro aromatic compound, significantly improving the efficiency of organic electro-synthesis.
摘要:
An electrochemical reduction device is provided with an electrode unit, a power control unit, an organic material storage tank, a water storage tank, a gas-liquid separator, and a control unit. The electrode unit has an electrolyte membrane, a reduction electrode, and an oxygen evolving electrode. The electrolyte membrane is formed of an ionomer. A reduction catalyst used for the reduction electrode contains at least one of Pt and Pd. The oxygen evolving electrode contains catalysts of noble metal oxides such as RuO2, IrO2, and the like. The control unit controls the power control unit such that a relationship, VHER−20 mV≦VCA≦VTRR, can be satisfied when the potential at a reversible hydrogen electrode, the standard redox potential of an aromatic hydrocarbon compound or an N-containing heterocyclic aromatic compound, and the potential of the reduction electrode are expressed as VHER, VTRR, and VCA, respectively.
摘要:
The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
摘要:
Methods and systems for electrochemical conversion of carbon dioxide to organic products including formate and formic acid are provided. A method may include, but is not limited to, steps (A) to (C). Step (A) may introduce an acidic anolyte to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce a bicarbonate-based catholyte saturated with carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a high surface area cathode including indium and having a void volume of between about 30% to 98%. At least a portion of the bicarbonate-based catholyte is recycled. Step (C) may apply an electrical potential between the anode and the cathode sufficient to reduce the carbon dioxide to at least one of a single-carbon based product or a multi-carbon based product.