Abstract:
Steel cord includes a first group and a second group. The second group is helically twisted around the first group with a cord twisting step. The first group includes a first number of first steel filaments. The first number ranges between three and eight. The second group comprises a second number of second steel filaments. The second number is equal to or greater than the first number. The first filaments having a twist step greater than 300 mm. At least one of the second filaments is polygonally performed in order to allow rubber penetration.
Abstract:
A tire cord having core filaments preformed into a helical configuration while maintaining the core filaments in a parallel, side-by-side relationship. The core filaments are not twisted or stranded together. High tensile strength sheath filaments are also preformed into a flattened helical configuration so that the sheath filaments can be wrapped around the side-by-side core filaments such that the sheath filaments do not put such tension on the core filaments as to cause the core filaments to bunch. The core filaments are maintained in a flat, side-by-side configation so that no voids are formed and rubber can penetrate into the tire cord. The core filaments may number from three to six and the sheath filaments from one to seven. The cross-section of the tire cord is flattened and confined within an oval-shaped outer bound, the oval outer bound being characterized by a major axis and a minor axis. It is desirable that the minor axis be no greater than 60% of the major axis to created the appropriate difference in the bending modulus of the tire cord in the horizontal versus the vertical direction.
Abstract:
A reinforcement for a building works structure comprising an assembly of solid wires. The wires are mutually parallel to form a bundle and the reinforcement comprises a sheath made of plastic material enclosing the bundle and providing it with cohesion.
Abstract:
A steel cord comprises a core of three or more filaments bundled without twisting and a sheath of at least one layer comprised of plural filaments wound around the core, wherein all core filaments are arranged in a given rectangle at any section in its longitudinal direction. Such steel cords are used in a belt of a pneumatic tire. And also, these cords are produced by a tubular-type twisting machine having a specified structure.
Abstract:
A steel cord for the reinforcement of rubber articles has a three-layer twisting structure comprising a core of 2 steel filaments, a middle sheath layer of 6 steel filaments and an outer sheath layer of 11 steel filaments, in which a ratio of filament diameter ds in the middle and outer sheath layers to filament diameter dc in the core (ds/dc) is within a range of 1.15-1.5 and a twisting pitch of the core is not less than 20 mm, and is used as a reinforcing member in a heavy duty pneumatic radial tire, conveyor belt and the like.
Abstract:
A bead ring for tubeless pneumatic tires is disclosed. The bead ring includes a core formed by a plurality of wires or a solid shaped structure and is constructed of a non-elastic material. A plurality of layers of helically wound, closely spaced wires surround the core, and the wires of each layer are oppositely pitched with respect to the wires of adjacent layers. The combination of the core and the layers of wires form a bead bundle having a generally semi-circular cross-section. This abstract is not to be taken either as a complete exposition or as a limitation of the present invention. The full nature and extent of the invention is discernible only by reference to, and from, the entire disclosure.
Abstract:
A steel cord for a tire reinforcement having a non-circular cross-section includes: a lower strand; and an upper strand that surrounds an outer circumferential surface of the lower strand so as to have an m+n structure, wherein the lower strand includes a plurality of core wires, each of the plurality of core wires have a flat surface on a portion in which the plurality of the core wires come into contact with each other, and the plurality of core wires come into surface contact with each other through the flat surface.
Abstract:
To provide a pneumatic tire wherein the lightweight properties of a tire is secured while improving the plunger energy and BES resistance thereof, which is particularly suitable for tires for a large passenger car or extra load tires.A pneumatic tire comprising a carcass 1 as a skeleton, and at least two belt layers 2a, 2b each formed by rubberizing a plurality of steel cords arranged obliquely with respect to the tire circumferential direction on the outside in the tire radial direction of the crown portion of the carcass is provided. The steel cord is composed of two or more core wires and five to seven sheath wires twisted together around the core wires; the interval between adjacent steel cords in the belt layer is more than 1.0 mm and not more than 1.50 mm; and the gauge of the belt layer is not less than 1.20 mm and not more than 1.60 mm.
Abstract:
An object of the present invention is to make it possible to provide a cord, in particular, a cord for reinforcing a rubber article in which rubber permeation properties are improved by coating filaments as constituents of the cord with rubber in a reliable and stable manner. The cord of the present invention is produced by, when the metal filament is guided to an extruder and extruded together with rubber from a mouthpiece of the extruder so that the metal filament is coated with the rubber, juxtaposing plural metal filaments in the mouthpiece and extruding the metal filaments together with rubber.
Abstract:
To provide a pneumatic tire wherein the lightweight properties of a tire is secured while improving the plunger energy and BES resistance thereof, which is particularly suitable for tires for a large passenger car or extra load tires.A pneumatic tire comprising a carcass 1 as a skeleton, and at least two belt layers 2a, 2b each formed by rubberizing a plurality of steel cords arranged obliquely with respect to the tire circumferential direction on the outside in the tire radial direction of the crown portion of the carcass is provided. The steel cord is composed of two or more core wires and five to seven sheath wires twisted together around the core wires; the interval between adjacent steel cords in the belt layer is more than 1.0 mm and not more than 1.50 mm; and the gauge of the belt layer is not less than 1.20 mm and not more than 1.60 mm.