Abstract:
A tension apparatus of a vehicle door powered sliding device comprises a motor fixed to a base plate, a wire drum mounted to the base plate by a first shaft and rotated by the motor, a wire cable provided between a vehicle sliding door and the wire drum for pulling the sliding door forward or rearward when the wire drum rotates, first and second tension arms rotatably mounted on the first shaft and having tension rollers which makes contact with the wire cable, an intermediate lever rotatably mounted on the first shaft, an adjusting member for fixing the first tension arm and the intermediate lever so that an angle of the first tension arm and the intermediate lever can be adjusted, a tension spring provided between the intermediate lever and the second tension arm.
Abstract:
A power drive moves a movable closure between an open position and a closed position with respect to a portal defining a passage through a barrier. The power drive can include an elongated drive member connected to the movable closure and a ball nut drive assembly for selectively moving the drive member longitudinally to position the movable closure between the open position and the closed position with respect to the passage through the barrier. The barrier can define at least a portion of a stationary structure or a vehicle, where the passage allows access within the structure or the vehicle. The movable closure can include a sliding door, hatch, window, roof panel or the like. The elongated drive member can be a compound drive member having at least one gear or tooth-like member extending helically around in uniformly spaced turns about a core of the drive member to form a rigid or resilient screw-like portion capable of being driven by operable engagement with the recirculating ball nut drive assembly. A flexible portion, such as a push/pull cable can be attached to one end of the screw-like member to allow the power drive to move a movable closure along a curved or other non-linear path.
Abstract:
A window system is proposed in which windows (41) which can be both locked and tilted mechanically are connected via microprocessors (43) to a monitoring center (49) which can display the locking and closure status of the individual windows (41) via visual display units (51, 57). The microprocessors (43) are located in the vicinity of the windows (41) and connected to the receiver (61) of a radio-controlled remote control unit by which the windows can be remotely controlled. The windows (41) can also be controlled via an operating unit (65) in the monitoring center (49). The remote control unit may involve either portable transmitters (63) or transmitters with a fixed location (67) which control the windows (41) via sensors (69) as a function of ambient air parameters, such as the relative air humidity, temperature or the CO.sub.2 content of the air in the room. The windows (41) have a locking drive integrated in the handle and a separate tilting drive. A central blocking device which blocks the microprocessors (43) permits central blocking of individual windows or of all the windows in the system.
Abstract:
A side mount garage door operator capable of being positioned on either the ceiling or end wall of a garage at either side of the garage door on a frame unit, the operator providing a clutch for disengaging the drive motor from the garage door in the absence of electric power and having a manual graspable handle operated by a solenoid when power is present and operable manually in the absence of power. Novel limit means having limits which is on the end of an axially movable bar which is moved by a follower riding in a spiral groove in the base of a disk such as a gear connected to the drive shaft.
Abstract:
A lock-out trolley for a garage door has a first trolley member having body and a pair of pivot pins connected thereto. A latch arm, pivotally mounted on the pivot pins, has a trolley engaging member for selectively engaging a second trolley member. A cardioid shaped aperture in the latch arm engages one of the pivot pins and may lock the latch arm out of engagement with the second trolley member. A spring biases the latch toward its engaged position.
Abstract:
Garage door opener for simple installation and to fully actuate various counterbalanced doors of different makes with minimum mechanism, and to be packaged and sold as a compact kit. The opener is built around a short main drive shaft adapted to be coupled coaxially to the end of the door counterbalance shaft. The drive shaft is journalled in two frame side members and therebetween carries a worm gear and two friction drive disks spring-pressed against the gear to transmit limited drive torque therefrom to the shaft. The gear is driven by a worm on the shaft of a motor on a carrier which is slidable on the frame. A manual cam moves the carrier between a worm-engaged position for drive and a worm-disengaged position to release the door for manual operation. A threaded extension of the main shaft carries a pair of traveling nuts which actuate switches to limit door travel both directions. In one modification, the assembly is mounted on studs on a mounting plate and adjusted thereto to bring the drive shaft coaxial with the counterbalance shaft, and the two shafts are coupled. In a second modification, the assembly is cantilevered by its drive shaft on the counterbalance shaft and is stabilized in coaxial relation therewith by a torque-reaction bracket. Such bracket may include a torque-limiting switch operable to reverse the drive in response to excess torque. For most installations, a down-drive cable is added to the counter-balance mechanism and connected to positively move the door from open to closed position in response to down-drive rotation of the counterbalance shaft.
Abstract:
An improved position control apparatus is disclosed to control a motor-driven door operator to halt movement of a door at an open position and a closed position. The position control apparatus includes a control screw means in the form of a threaded shaft extension of the motor shaft or a threaded rod coupled to the motor shaft which is rotated when the motor is energized. A travel nut is threadedly engaged with the control screw means and is constrained against rotational motion so as to reciprocate along the control screw means. Position detection means, such as switches, are disposed near the control screw means for actuation by the travel nut to control the motor as the door approaches the open position and the closed position. In another embodiment, a toggle switch is mounted on the travel nut, and the switches are replaced by stops for actuation of the toggle switch to control the motor. An improved obstruction detector apparatus is also provided to control the motor if an obstruction is encountered as the door moves between the open position and the closed position. The obstruction detector apparatus includes a safety switch which is actuable by rotation of the motor casing due to reaction torque, if an obstruction is encountered as the door moves in one direction, and a lever that is actuable by rotation of the motor casing, if an obstruction is encountered as the door moves in an opposite direction, to actuate the safety switch.