Abstract:
A method of controlling a fuel injector is provided. Engine speed is monitored. Engine torque output is monitored. It is determined if the engine speed is within one of a plurality of predefined engine speed ranges. It is determined if the engine torque output is within one of a plurality of predefined engine torque output ranges. One of a plurality of injector coking factors is assigned based on the determined predefined engine speed range and the determined predefined engine torque output range. A total injector coking factor is calculated based upon total operating time within each of the plurality of injector coking factors. A duration of a fuel injection is increased based upon the calculated total injector coking factor.
Abstract:
A system and method is provided for the use of the ion current signal characteristics for onboard cycle-by-cycle, cylinder-by-cylinder measurement, for example soot measurement, load measurement such as indicated or brake mean effective pressure, or fuel consumption measurement in an internal combustion engine. The system may acquire an ion current signal, measures one or more of soot, load, fuel consumption and may control the engine operating parameters accordingly.
Abstract:
The present disclosure is directed to integrated injector/igniters providing efficient injection, ignition, and complete combustion of various types of fuels. One example of such an injectors/igniter can include a body having a base portion opposite a nozzle portion, and a fuel passageway extending from the base portion to the nozzle portion. A force generator and a first valve are carried by the base portion. The first valve is movable in response to actuation from the force generator to move between closed and open positions. The injector/igniter also includes a second valve at the nozzle portion that is deformable in response to pressure in the fuel passageway to deform between a closed position and an open position.
Abstract:
A fuel injection control device is adapted for a fuel injection system including an injector and a high-pressure pump that raises pressure of fuel and supplies the fuel to the injector. The fuel injection control device includes a selecting unit for selecting by which one of full lift injection and partial injection to inject fuel, and a pump control unit for controlling operation of the high-pressure pump such that a pressure of fuel supplied to the injector coincides with a target pressure. The selecting unit selects the partial injection when a required injection quantity of fuel is equal to or smaller than a partial maximum injection quantity. A fuel injection system includes the fuel injection control device, the injector, and the high-pressure pump.
Abstract:
This invention is concerned with improving the fuel efficiency of an engine. An engine or method of operating an engine that by introducing a secondary additive fuel or fuels in order to effect within the engine an extended combustion time and improve the ‘burn’ during the power stroke so as to ensure that fuel is utilised (burnt) as fully as possible thus improving the efficiency of the engine and bringing about a reduction of harmful exhaust emissions.
Abstract:
A fuel injection control apparatus of a four cycle engine having three cylinders comprises: a crank angle detection device for detecting the crank angle of the four cycle engine; a first computation device for computing the quantity of fuel, which is injected in a predetermined stroke of a four stroke cycle, at a first computation timing; a second computation device for computing the quantity of fuel, which is injected one stroke before the predetermined stroke, at a second computation timing 240 degrees ahead of the crank angle of the first computation timing; and a third computation device for computing the quantity of fuel, which is injected two strokes before the predetermined stroke, at a third computation timing 240 degrees ahead of the crank angle of the second computation timing. The fuel injection control apparatus is adapted to decrease interruptions by computations for fuel injection control in the three cylinder engine, and reduce control load.
Abstract:
A fuel injection system has a common rail storing fuel, a fuel injector injecting the fuel, a fuel-passage supplying the fuel to the fuel injector, and a fuel-pressure sensor detecting a fuel pressure. An ECU acquires a waveform of a fuel pressure representing a change of a fuel pressure based on the detected fuel pressure at the fuel injection. The ECU calculates a speed of a fuel pressure wave forming the waveform of the fuel pressure based on a period of a pulsation of the waveform of the fuel pressure and a fuel passage length, and a fuel density based on the speed of the fuel pressure wave. The ECU further calculates a fuel cetane number, and a kinematic viscosity of the fuel based on the fuel density and the fuel cetane number. The ECU judges fuel properties based on the kinematic viscosity of the fuel.
Abstract:
Disclosed are a control device and a control method that are used with an internal combustion engine in which the air-fuel ratio in the vicinity of an ignition plug differs from the overall air-fuel ratio in a cylinder, and capable of properly fulfilling demands concerning various capabilities of the internal combustion engine by accurately reflecting each of the demands in the operation of each actuator. Three physical quantities, namely, a torque, an efficiency, and an air-fuel ratio, are used as controlled variables for the internal combustion engine. Target values for the controlled variables are then set by integrating at least some of demands concerning a capability of the internal combustion engine into the three physical quantities. Further, in accordance with the target values for the three controlled variables, namely, the torque, the efficiency, and the air-fuel ratio, three operation amounts, namely, an intake air amount adjustment valve opening, an ignition timing, and a fuel injection amount are set, and a fourth operation amount for adjusting the air-fuel ratio distribution in the cylinder is set.
Abstract:
A system of a vehicle includes a fueling prediction module, a short pulse determination module, a torque control module, and a generator control module. The fueling prediction module generates N predicted fueling pulse widths for N future combustion events of an engine, respectively. N is an integer greater than one. The short pulse determination module determines a number of the N predicted fueling pulse widths that are less than a predetermined period. The torque control module selectively increases a torque output of the engine based on the number. The generator control module selectively increases a load imposed by a generator of electricity based on the number.
Abstract:
A fuel injector includes a fuel valve with a valve seat and a movable valve needle, a calibration spring and an electromagnetic actuator with a solenoid and a movable armature. The calibration spring exerts a pressing force on the valve needle for pressing the valve needle in a closing direction towards the valve seat. When the solenoid is electrically energized, the electromagnetic actuator is operable to transfer a lifting force to the valve needle by engagement with the armature for lifting the valve needle from the valve seat to a fully open position against the pressing force of the calibration spring. The calibration spring and the electromagnetic actuator are configured such that the lifting force equals the pressing force in the fully open position.