摘要:
The invention relates to a technique for forming a single crystalline thin film of good quality on an underlayer. Such a technique is suitably applicable to provision of an oxide high-temperature superconductor thin film usable for a superconducting wire material, a superconducting device or the like. The single crystalline thin film formed on a substratum is made of a substance different from that of the substratum. A specific atomic layer contained in common in the substratum and the thin film is shared at an interface between the substratum and the thin film. In a region as adjacent to the interface as 100 or fewer unit cells of the thin film apart from the interface, a ratio of crystalline region having grown with an orientation of ±2 degrees or less deviation angle on the basis of a crystal orientation of the substratum is 50% or more.
摘要:
The invention relates to superconductor articles, and compositions and methods for making superconductor articles. The methods can include using a precursor solution having a relatively small concentration of total free acid. The articles can include more than one layer of superconductor material in which at least one layer of superconductor material can be formed by a solution process, such as a solution process involving the use of metalorganic precursors.
摘要:
Rare-earth-Ba—Cu—O superconductors having improved critical current density are described, as are methods of making same. These superconductors comprise a drop in Jc of less than a factor of about 7 at a temperature of between about 30K to about 77K, and at a magnetic field of about 1 Tesla, when the magnetic field is applied normal to the surface of the superconductor, as compared to a Jc in the presence of no magnetic field. These superconductors, when a magnetic field is applied perpendicular to the HTS surface have a peak Jc that is about 50-90%, and when a magnetic field is applied in any orientation with respect to the HTS surface have a Jc value that is at least about 50%, of the peak Jc that exists when the magnetic field is applied parallel to the surface of the superconductor.
摘要:
Disclosed is an oxide high temperature superconductor having a crystalline substrate of low dielectric constant formed thereon with a thin film of the oxide high temperature superconductor that is high in crystallographic integrity and excels in crystallographic orientation as well as a method of making such an oxide high temperature superconductor. In fabricating an oxide high temperature superconductor containing Ba as a constituent element and having such a substrate formed thereon with a thin film of the oxide high temperature superconductor, a first buffer layer composed of CeO3 is formed on a sapphire R (1, null1, 0, 2) face substrate for reducing lattice mismatch between the sapphire R (1, null1, 0, 2) face substrate and the oxide high temperature superconductor thin film, and a second buffer layer composed of such an oxide high temperature superconductor but in which Ba is substituted with Sr is formed on the first buffer layer made of CeO3 to allow the oxide high temperature superconductor thin film to be formed on the second buffer layer. Thus, if the first buffer layer for reducing the lattice mismatch between the sapphire R (1, null1, 0, 2) face substrate and the oxide high temperature superconductor thin film is liable to an interfacial reaction with Ba from the oxide high temperature superconductor thin film, the second buffer layer prevents the interfacial reaction, thereby permitting the epitaxial growth of an oxide high temperature superconductor thin film that excels on both crystallographic integrity and crystallographic orientation.
摘要:
A superconductor article includes a substrate and a first buffer film disposed on the substrate. The first buffer film has a uniaxial crystal texture characterized (i) texture in a first crystallographic direction that extends out-of-plane of the first buffer film with no significant texture in a second direction that extends in-plane of the first buffer film, or (ii) texture in a first crystallographic direction that extends in-plane of the first buffer film with no significant texture in a second direction that extends out-of-plane of the first buffer film. A second buffer film is disposed on the first buffer film, the second buffer film having a biaxial crystal texture. A superconductor layer can be disposed on the second buffer film. Ion-beam assisted deposition (IBAD) can be used to deposit the second buffer film.
摘要:
The invention provides a method of increasing the extent of a desired biaxial orientation of a previously formed non-single-crystal structure by contacting said structure with an oblique particle beam thereby forming in the structure a nucleating surface having increased desired biaxial orientation. The method can further include a step of epitaxially growing the crystalline formation using the nucleating surface to promote the epitaxial growth. The invention also provides a crystalline structure containing a nucleating surface formed by contacting a previously formed non-single-crystal structure with an oblique particle beam, from 0 to 10 adjacent orientation-transmitting layers, and a crystalline active layer. In this structure, the active layer is oriented in registry with the nucleating surface.
摘要:
The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.
摘要:
Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO3, R1nullxAxMnO3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.