Abstract:
A magnetic device comprising at least one stator (1) and one translator (2), which translator (2) is movable along a translator movement path (3) in a translator movement direction (4) relative to the Stator (1), the translator (2) being coupled, at least in portions of the translator movement path (3), to an acceleration unit (5), which on coupling the translator (2) with the acceleration unit (5) generates an acceleration force state comprising at least a corrective force Fcorr acting on the translator (2), which acceleration force state can cause a movement of the translator (2) away from the stator (1), wherein when the translator (2) is coupled to the acceleration unit (5) and the translator (2) moves away from the stator (1), the sum total of the forces acting on the translator (2) in the translator movement direction (4) due to magnetism is greater than or equal to zero, so that the translator (2) can be separated from the attractive force generated by the stator (1) by means of the corrective force Fcorr.
Abstract:
A permanent magnet buried type electric motor includes a rotator having a rotator core and a stator. The rotator core includes: a plurality of magnet accommodating holes formed as many as the number of poles; a plurality of permanent magnets; air holes through which a coolant and a refrigerant oil pass; and a fastening hole. The magnet accommodating hole is formed into a shape that projects toward a radially inner side and is recessed toward a radially outer side. The air hole portions and the fastening holes are arranged so as to be alternately positioned. The air hole portion is formed into such a shape that includes a portion extending in an arc shape along an outer peripheral surface of a rotary shaft in a circumferential direction of the rotator core so that an area of the air hole portion is larger than an area of the fastening hole.
Abstract:
The present invention concerns a method of controlling a wind power installation having a generator with a stator, a pole wheel with at least two rotor poles with a respective pole winding for producing a magnetic field guided in the respective rotor pole, and an air gap between the stator and the pole wheel, including the steps—controlling a respective exciter current through each pole winding,—varying at least one of the exciter currents relative to at least one further one of the exciter currents, and/or—varying at least one of the exciter currents in dependence on the position of the pole wheel in relation to the stator.
Abstract:
An interior permanent magnet synchronous motor includes a stator a rotor disposed with a space between the stator and the rotor, and a plurality of permanent magnets embedded in the rotor. In particular, a plurality of slits are formed in one side surface of the permanent magnet in a rotation direction of the rotor at equal intervals.
Abstract:
A generator for a wind turbine, in particular a direct drive wind turbine is provided. The generator includes a rotor assembly that is rotatable around a rotary axis and a stationary stator assembly, wherein the rotor assembly and the stator assembly are arranged with respect to each other such that a gap exists between the rotor assembly and the stator assembly, so that the rotor assembly is rotatable with respect to the stator assembly. The stator assembly has a surface facing the gap and the rotor assembly. The stator assembly includes a thermal insulation layer applied onto the surface for reducing an exchange of thermal energy between the rotor assembly and the stator assembly.
Abstract:
An electric motor includes a magnet rotor which is placed with an air gap interposed between it and a stator and has a magnetic pole portion formed from a plastic magnet which swells by hydrogen bonds, an inverter circuit, a DC-voltage conversion portion, a driving logic control portion, a supply current value control portion, a current value designation portion, a reference current value designation portion, and a correlation designation portion, wherein the correlation designation portion determines an average current value by changing the average current value linearly or non-linearly with respect to a reference current value, and the magnetic pole portion absorbs moisture to swell, thereby making the air gap smaller, at higher humidity than a reference humidity.
Abstract:
In a rotating electrical machine of axial-gap type in which a stator and a rotor are opposed to each other in arrangement and winding axis is parallel with a rotating shaft direction, the stator has an “m” protruding in the rotating shaft direction are distributed along a circumferential direction thereof, in which the winding pole is formed of a magnetic member having a plurality of teeth in a circular-arc shape in a diameter direction, and wherein the rotor is formed of a magnetic member having a plurality of teeth in a circular-arc shape in a diameter direction, and the number of the teeth of the stator and the rotor are arranged in a manner opposite to each other through air gap so as to be engaged with each other. The stator and the rotor are opposed on both sides of the rotor and the stator.
Abstract:
An electric machine having a stator and a rotor which is mounted so as to be rotatable about a rotor axis and has a rotor body, in which at least two permanent magnets are arranged in receptacles, a first of which component magnets is associated with a first set of permanent magnets, and a second of which component magnets is associated with a second set of permanent magnets. The permanent magnets of the first set differ from the permanent magnets of the second set with respect to the material composition, In particular to the magnetic properties, and wherein at least one permanent magnet of the first or second set or at least one composite body has a contour, the cross-sectional face of which, being located perpendicularly with respect to the longitudinal axis, decreases within the respective receptacle towards that end thereof which is radially further to the outside.
Abstract:
An electrical machine, in particular an electric motor of a motor vehicle, having a stator and having a rotor which has a rotation axis. In this case, an electrical machine can be a brushless electric motor (DC motor) or a synchronous machine, but also a generator. The stator or the rotor has an electromagnet structure and the other has a permanent-magnet structure which comprises a first quantity of permanent magnets and a second quantity of permanent magnets. At an operating temperature, the magnetic coercive field strength of the first quantity is greater than the magnetic coercive field strength of the second quantity.
Abstract:
A permanent magnet machine is provided with a rotor positioned at least partially within a stator. The rotor includes first and second ring segments oriented axially around a central axis. The rotor defines first and second configurations in the first and second ring segments, respectively. The first configuration is sufficiently different from the second configuration such that torque ripple may be minimized. A first layer of slots, defining a slot outer edge, may be formed in the rotor. In one embodiment, a stator-to-slot gap varies between the first and second ring segments. In another embodiment, a stator-rotor gap varies between the first and second ring segments. In another embodiment, a bridge thickness varies between the first and second ring segments. Thus the rotor exhibits axial asymmetry.