Abstract:
It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (Gnull) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
Abstract:
Blends of two or more polyethylenes are made by reacting ethylene with an oligomerization catalyst that forms null-olefins, and two polymerization catalysts, one of which under the process conditions copolymerizes ethylene and null-olefins, and the other of which under process conditions does not readily copolymerize ethylene and null-olefins. The blends may have improved physical properties and/or processing characteristics.
Abstract:
There is provided a process for the addition of a nucleophile across an electron poor carbon-carbon double bond (a Michael addition) comprising contacting in a solvent: i) a nucleophile; ii) a compound comprising an electron poor double bond; and iii) a catalyst comprising a soluble polymer and a polyamino acid.
Abstract:
Methods for preparing olefin polymers, and catalysts for preparing olefin polymers are disclosed. The polymers can be prepared by contacting the corresponding monomers with a Group 8-10 transition metal catalyst and a solid support. The polymers are suitable for processing in conventional extrusion processes, and can be formed into high barrier sheets or films, or low molecular weight resins for use in synthetic waxes in wax coatings or as emulsions.
Abstract:
This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted treated solid oxide compound.
Abstract:
This disclosure relates to a method for producing and using catalysts in the production of bisphenols, and in particular to a method for producing catalysts which contain poly-sulfur mercaptan promoters, and using these catalysts in the production of bisphenol-A and its derivatives.
Abstract:
A method for increasing the solubility of a magnesium halide includes providing an electron donating solvent, contacting a magnesium halide with the solvent; and providing an electron donor compound to form a magnesium halide composition. The composition is characterized by a solubility in the electron donor solvent that does not decrease up to the boiling point of the solvent. A polymerization catalyst precursor composition comprises the product of mixing the magnesium halide composition with a transition metal compound. Active catalysts prepared from such precursors and a methods of polymerization using such catalysts are also disclosed.
Abstract:
The olefinic polymer characterised in that the n-decane-soluble content thereof is 10% by weight or less and the content of a ligand having a cyclopentadienyl structure is 5 ppb by weight or less. The process for producing an olefinic polymer is a process of producing an olefinic polymer by (co)polymerizing olefins in a gas phase using a fluidized-bed reactor, the process comprising: a polymerization step of (co)polymerizing the olefins with allowing a saturated aliphatic hydrocarbon to exist in a concentration of 2 to 30 mol % in the fluidized-bed reactor and a ligand removing step involving a step of bringing the resulting (co)polymer into contact with a ligand-remover and a step of heating said (co)polymer which has been brought into contact with the ligand-remover.
Abstract:
Immobilized calixarenes and calixarene-related compounds are produced by a process comprising either: (a) contacting the calixarene or calixarene-related compound with a substrate containing one or more metallic or non-metallic oxides that has been surface modified by reaction with one or more polyhalides and/or polyalkoxides of an element capable of forming a stable aryloxide species with the substrate, or (b) reaction of such a substrate with a calixarene or calixarene-related compound that has been previously modified or derivatized by reaction with said polyhalides and/or polyalkoxides.
Abstract:
A catalyst composition for use in dimerizing, co-dimerizing or oligomerizing olefins comprises: at least one zero-valent nickel complex; at least one acid with formula HnullXnull in which Xnull represents an anion; and at least one ionic liquid with general formula QnullAnull in which Anull is an anion identical to or different from Xnull. The composition can also comprise a nitrogen-containing ligand. It can be used in dimerizing, co-dimerizing, oligomerizing and in polymerizing olefins.