Abstract:
A control circuit includes a controlled pressure line, connectable to a compressor, a first line, connectable to the controlled pressure line and connected to the first volume for introducing air inside the first volume, and a second line, connectable to the controlled pressure line and connected to the second volume for introducing air inside the second volume. The control circuit also includes a first spool valve, which is a three way-two positions valve, configured to switch from a first position to a second position if the pressure in the first volume exceeds a predetermined pressure.
Abstract:
A pressure safeguard device (1) for wheels filled with compressed gas comprises at least two tubes which are arranged next to one another in such a way as to run around the tire axis, each of said tubes having a supply line (3) for compressed gas and a common supply connection (4). On each supply line (3), a connectable and releasable connection is formed between the tube (2) and the common supply connection (4). Preferably, the tubes (2) are releasably connected, by means of a connection device (5, 6) which is separate from the tire, so as to form a stack of tubes (2) which directly adjoin one another along their circumference by way of side regions. If one tube (2) is damaged, the other tubes (2) remain intact and expand together into the entire area between the rim (7) and the tire (8). By topping up the intact tubes with compressed gas, the desired tire pressure can be achieved without changing the wheel or the tire.
Abstract:
A valve for air chambers includes a fixed body and a mobile selector body, wherein the mobile selector body is disposed coaxially in the fixed body. The mobile selector body is configured to slide with respect to the fixed body. The mobile selector body has a first position of use, associated during use to at least a first outlet, and a second position of use, associated during use to at least a second outlet.
Abstract:
Vehicle systems and components are set forth, which aim to reduce rolling friction caused in part by the contact between the vehicle's tires and the ground surface over which the vehicle is traversing. These systems and/or components thereof may increase the overall fuel efficiency of a vehicle. In the examples provided, the systems and/or components change the tread contact patch of one or more tires during movement of the vehicle.
Abstract:
Provided is a pneumatic tire/rim assembly which is improved in the run-flat durability with the mass of the tire being reduced. In a pneumatic tire/rim assembly with a run-flat capability, an air bladder (2) made of a circular ring-shaped film body is inserted inside a pneumatic tire (1) mounted on a rim (R). At least part of the film body is formed of a sealing layer (3) made of a thermoplastic resin or a thermoplastic elastomer composition obtained by blending an elastomer in a thermoplastic resin.
Abstract:
To provide a pneumatic tire capable of improving the durability of connection points between partition wall parts and a tire inside surface.In a pneumatic tire 10, partition wall parts 24 that extend inward in a tire radial direction from a tire inside surface 17 of tire shoulder parts 21 and whose tire radial direction inside ends contact a rim 12 are disposed. A pair of right and left reinforcement layers 38 are disposed in regions ranging from the partition wall parts 24 to tire side parts 20 via connection parts 29 between the partition wall parts 24 and the tire inside surface 17 such that the reinforcement layers 38 continue from the partition wall parts 24 to the tire side parts 20 via the connection parts 29 between the partition wall parts 24 and the tire inside surface 17. Because of the reinforcement layers 38, the portion of each of the connection parts 29 between the partition wall parts 24 and the tire inside surface 17 where a first carcass ply 32 is disposed and the portion thereof where a second carcass ply 37 is disposed can be prevented from separating, whereby the durability of the connection parts 29 of the partition wall parts 24 can be improved in comparison to what has conventionally been the case.
Abstract:
The invention is a high-efficiency wheel product for use with various ground vehicles. The product is designed to provide rolling support to the vehicle and to accommodate various surface conditions, for example, smooth pavement, rough pavement, potholes, dirt roads, and other conditions. The wheel product includes a multi-chambered pneumatic tire designed to minimize energy loss between the tire and a rolling surface by substantially reducing tire flex, a main source of energy loss in ground vehicles. Additionally, the product can reduce the need for conventional drive train elements such as shock absorbers.
Abstract:
The pneumatic tire includes an outer tire installed such that a bead portion is inscribed in a rim flange, and an inner tire inserted inside the outer tire and installed such that a bead portion is inscribed in the bead portion of the outer tire. A plurality of protrusions are provided in an annular outer side wall surface region extending in an outer side in a tire diametrical direction from a bead heel of the inner tire so as to be differentiated in the positions in the tire diametrical direction and overlap with one another when seen in a tire circumferential direction, and a ventilation path for feeding an air supplied to a portion near the bead heel into an air chamber is formed between the protrusions in a state where the outer side wall surface region is inscribed in the bead portion.
Abstract:
A tire with reduced rolling noise includes a tire structure formed of at least one crown extended by two sidewalls and two beads. A base of each of the two beads is configured to be mounted onto a rim seat. The tire also includes a carcass-type reinforcing structure anchored into the two beads and an additional layer bonded to an inner wall of the tire structure. The additional layer is bonded to the tire structure at its edges and the rest of the additional layer is not bonded. The additional layer includes an inflation valve.
Abstract:
A tube-type tire to be mounted on the rim of a (e.g., spoke-type) wheel such as that commonly used by a bicycle or a motorcycle, whereby the tube-type tire will operate without a conventional inner tube and as if it were tubeless. The tire includes a main tire section that is seated upon the generally flat shelf of the rim and a pneumatic sealing ring having an inner tube that is seated upon the beadwell of the rim. An air chamber of the inner tube of the sealing ring is inflated to a greater pressure than an air chamber of the main tire section so as to isolate the air chamber of the main tire section from the rim and force the main tire section against the vertical lip of the rim. The sealing ring also has an outer inflatable liner that is located in surrounding engagement with the inner tube to separate the inner tube from the air chamber of the main tire section. The outer liner has one or more O-ring seals projecting outwardly from the side walls thereof and a centering lip projecting downwardly from the side walls. The O-ring seals are moved into sealing engagement with the inside of the main tire section when the air chamber of the inner tube is inflated and the liner is expanded. The centering lips of the liner are seated upon the beadwell of the rim to cause the liner to be automatically centered over the inner tube.