Abstract:
A method of manufacturing a mineral fibre thermal insulation product comprises the sequential steps of:
Forming mineral fibres from a molten mineral mixture; Spraying a substantially formaldehyde free binder solution on to the mineral fibres, the binder solution comprising: a reducing sugar, an acid precursor derivable from an inorganic salt and a source of nitrogen; Collecting the mineral fibres to which the binder solution has been applied to form a batt of mineral fibres; and Curing the batt comprising the mineral fibres and the binder which is in contact with the mineral fibres by passing the batt through a curing oven so as to provide a batt of mineral fibres held together by a substantially water insoluble cured binder.
Abstract:
A method of manufacturing a mineral fibre thermal insulation product comprises the sequential steps of:
Forming mineral fibres from a molten mineral mixture; Spraying a substantially formaldehyde free binder solution on to the mineral fibres, the binder solution comprising: a reducing sugar, an acid precursor derivable from an inorganic salt and a source of nitrogen; Collecting the mineral fibres to which the binder solution has been applied to form a batt of mineral fibres; and Curing the batt comprising the mineral fibres and the binder which is in contact with the mineral fibres by passing the batt through a curing oven so as to provide a batt of mineral fibres held together by a substantially water insoluble cured binder.
Abstract:
A method of manufacturing a mineral fibre thermal insulation product comprises the sequential steps of:
Forming mineral fibres from a molten mineral mixture; Spraying a substantially formaldehyde free binder solution on to the mineral fibres, the binder solution comprising: a reducing sugar, an acid precursor derivable from an inorganic salt and a source of nitrogen; Collecting the mineral fibres to which the binder solution has been applied to form a batt of mineral fibres; and Curing the batt comprising the mineral fibres and the binder which is in contact with the mineral fibres by passing the batt through a curing oven so as to provide a batt of mineral fibres held together by a substantially water insoluble cured binder.
Abstract:
To provide a coating liquid composition containing a fluororesin, whereby a film excellent in the surface flatness can be formed by a plate printing method. A coating liquid composition comprising a fluororesin having an aliphatic ring in the main chain and a fluorinated solvent, wherein the fluorinated solvent has a boiling point of at least 185° C., and the composition has a viscosity of at most 1,000 mP·s at 25° C.
Abstract:
A method for producing three-dimensional molded parts by means of layering, the moisture content of the build material mixture being able to be regulated.
Abstract:
To provide a curing accelerator for an oxidatively polymerizable unsaturated resin which can decrease the amount of cobalt metal soap used and has curing performance equal to or higher than excellent curing performance of the cobalt metal soap, and a printing ink and a coating material using the same. A curing accelerator for an oxidatively polymerizable unsaturated resin including a manganese or cobalt complex (α) containing quinolinol compound ions represented by Structural Formula (1) as a ligand, and a printing ink and a coating material including the curing accelerator. In the formula, R1 is any of a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a hydroxyl group, an amino group, a nitro group, a nitroso group, a sulfo group, and a halogen atom, and n is an integer of 1 to 6.
Abstract:
Provided are a resin composition for underlayer film formation with which a variation hardly occurs in the line width distribution after processing due to a small thickness of a residual film after mold pressing, a layered product, a method for forming a pattern, an imprint forming kit, and a process for producing a device.A resin composition for underlayer film formation includes a resin having a group represented by General Formula (A) and at least one group selected from a group represented by General Formula (B), an oxiranyl group and an oxetanyl group, a nonionic surfactant and a solvent. Ra1 represents a hydrogen atom or a methyl group, Rb1 and Rb2 each independently represent a group selected from an unsubstituted linear or branched alkyl group having 1 to 20 carbon atoms and an unsubstituted cycloalkyl group having 3 to 20 carbon atoms, Rb3 represents a group selected from an unsubstituted linear or branched alkyl group having 2 to 20 carbon atoms and an unsubstituted cycloalkyl group having 3 to 20 carbon atoms, and Rb2 and Rb3 may be bonded to each other to form a ring.
Abstract:
A method for producing three-dimensional molded parts by means of layering, the moisture content of the build material mixture being able to be regulated.
Abstract:
A naphthalene derivative having formula (1) is provided wherein cyclic structures Ar1 and Ar2 denote a benzene or naphthalene ring, X is a single bond or C1-C20 alkylene, m is 0 or 1, and n is such a natural number as to provide a molecular weight of up to 100,000. A material comprising the naphthalene derivative or a polymer comprising the naphthalene derivative is spin coated to form a resist bottom layer having improved properties. A pattern forming process in which a resist bottom layer formed by spin coating is combined with an inorganic hard mask formed by CVD is available.