Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
A double-layer electrode coil for a high intensity discharge (HID) lamp and a method of making the electrode coil are provided. A more stable layer of coils is made by front winding, instead of back winding, the layers of wire. The second layer of wire is entirely within a helical groove on the exterior surface of the first layer of wire. This arrangement is particularly stable and permits more rapid insertion of the electrode shank after removal of the mandrel.
Abstract:
A self-gettering electron field emitter has a first portion formed of a low-work-function material for emitting electrons, and it has an integral second portion that acts both as a low-resistance electrical conductor and as a gettering surface. The self-gettering emitter is formed by disposing a thin film of the low-work-function material parallel to a substrate and by disposing a thin film of the low-resistance gettering material parallel to the substrate and in contact with the thin film of the low-work-function material. The self-gettering emitter is particularly suitable for use in lateral field emission devices. The preferred emitter structure has a tapered edge, with a salient portion of the low-work-function material extending a small distance beyond an edge of the gettering and low resistance material. A fabrication process specially adapted for in situ formation of the self-gettering electron field emitters while fabricating microelectronic field emission devices is also disclosed.
Abstract:
A high aspect ratio gated emitter structure and a method of making the structure are disclosed. Emitters may be provided in a densely packed array on a support. Two distinct layers of insulator material may surround the emitters. The lower layer of insulator material may be a non-conformally applied spray-on or spin-on insulator. The non-conformal insulator material may pool at the base regions of the emitters so that the tip regions of the emitters extend out of the lower layer of insulator material. The upper layer of insulator material is applied to the lower layer using a conformal process so that the tip regions of the emitters are covered by the upper layer of insulator material. Gate material is applied to the upper layer of insulator material. Holes are provided in the gate material over the tip regions and wells are provided in the upper layer of insulator material surrounding the tip regions. An etch resistant layer may optionally be provided between the upper layer of insulator material and the gate material.
Abstract:
A directly heated cathode structure includes a porous pellet impregnated with a cathode material, filaments connected to the porous pellet, a support supporting the filament, and an insulation block supporting the support, wherein the filaments are supported on the porous pellet by at least one auxiliary member. The supporting structure is very strong and the quality and productivity can be greatly improved by improvement of the filament welding process using the auxiliary members.
Abstract:
A size-arrayed emitter structure is disclosed for use in a field emission display device. The emitter structure is designed such that each emitter array (illustratively, an array comprising microtips 40 in a 5.times.5 matrix) has an emitter hole 52 size (critical dimension) distribution that is centered on the optimum hole critical dimension and extends past the point at which the emitter tip 40 will operate. If the manufacturing process varies and produces an actual critical dimension larger than the designed value, emitters with the designed critical dimensions smaller than optimal will shift toward optimal, and emitters with critical dimensions smaller than the minimum operating value will become operational, while emitters with designed critical dimensions larger than optimal will cease to function. Similarly, if the actual critical dimension is smaller than the designed value, emitters with the designed critical dimensions larger than optimal will shift toward optimal, and emitters with critical dimensions larger than the maximum operating value will become operational, while emitters with designed critical dimensions smaller than optimal will cease to function. This will result in a distribution of active emitters in each array that are centered on the optimal value and that extend from the minimum functional emitter critical dimension to the maximum functional emitter critical dimension. Where the number of emitter arrays per display pixel is relatively large, the critical dimension of all of the emitter holes within each array may be designed to be equal, and the totality of arrays within each pixel may be designed such that their emitter hole critical dimensions are centered on the optimum hole critical dimension and extend past the point at which the emitter tips will operate.
Abstract:
A thermionic emission cathode of a single crystal made of the calcium hexaboride type crystaline structure comprises a top surrounded by natural face inherent to the axial direction of the single crystal.
Abstract:
An ion beam source characterized in that a needle-like tip is comprised of a carbide, a nitride, or a diboride of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb and Ta, a hexaboride of at least one element of rare earth metal elements of atomic numbers 57-70, or carbon. Stable ion beam emission of high brightness and long life can be obtained by using the needle-like tip of the said material.
Abstract:
An electron gun for a shaped beam type electron beam delineating system is provided with a cathode which is prepared from a single crystal of lanthanum hexaboride (LaB.sub.6) the convex end portion of which has a tip radius ranging between 260 and 1,000 microns. The electron gun of the invention has a long effective life for producing a stable electron beam which can irradiate a limiting aperture with a uniform current density and insures the sufficiently high brightness of the electron beam image projected on a target.